Suppr超能文献

测量预测试概率对儿科门诊首次脑电图检查的影响 - 大流行期间基于证据的脑电图分诊指南。

Measuring the effects of pre-test probability on out-patient first EEG investigation in children - A guide to evidence-based EEG triage in a pandemic.

机构信息

Department of Clinical Neurophysiology, Children's Health Ireland (CHI)-Crumlin, Crumlin, Dublin 12, Ireland.

Department of Clinical Neurophysiology, Children's Health Ireland (CHI)-Crumlin, Crumlin, Dublin 12, Ireland.

出版信息

Seizure. 2021 Mar;86:8-15. doi: 10.1016/j.seizure.2021.01.007. Epub 2021 Jan 23.

Abstract

INTRODUCTION

The yield of epileptiform EEG abnormalities is lower in unselected Paediatric populations than in prospective studies of incident seizures or prevalent epilepsy studies. At a time of limited capacity, it is important to match available EEG resources to children who are most likely to benefit. In this study we evaluated a prospective triage tool for estimating the likelihood of epileptiform abnormality in children's first out-patient EEG.

METHODS

We prospectively triaged 1865 out-patient referrals to the largest Paediatric EEG laboratory in Ireland. Based on a structured algorithm, we dichotomized first EEG referrals into priority and non-priority groups and assigned one of 5 sub-levels based on anticipated EEG yield. EEGs were reported by a single Consultant in Clinical Neurophysiology.

RESULTS

Triage designated 757 (41 %) EEG referrals as non-priority. Priority exceeded non-priority referrals for all age groups except children between 18 months and 3.5 years. EEGs showed a two-fold higher incidence of interictal epileptiform abnormalities for priority referrals (36 % vs 18 %, p < 0.001). Rates of interictal epileptiform abnormality correlated with the 5 sub-levels of triage (p < 0.01). Epileptiform yield was highest (39 %) for children over 5 years vs 17 % for those under 5 years (p < 0.00001); these rates increased to 49 % and 20 % respectively for priority referrals.

CONCLUSION

Structured pre-test triage of EEG referrals can identify children who have the greatest likelihood of epileptiform abnormality. In a mixed population of Paediatric referrals, the epileptiform yield of first time EEG is 49 % for children over 5 years who are referred with an appropriate EEG indication. This is subject to much variability with epileptiform yields as low as 13 % in younger children with non-priority referrals. The use of a structured triage algorithm can help to optimise utility of EEG in situations of limited laboratory capacity.

摘要

简介

在未选择的儿科人群中,癫痫样 EEG 异常的检出率低于前瞻性发作性或现患性癫痫研究。在资源有限的情况下,将现有的脑电图资源匹配给最有可能受益的儿童是非常重要的。在这项研究中,我们评估了一种用于预测儿童首次门诊脑电图中癫痫样异常可能性的前瞻性分诊工具。

方法

我们前瞻性地对爱尔兰最大的儿科脑电图实验室的 1865 例门诊转诊患者进行了分诊。根据一个结构化的算法,我们将首次脑电图转诊分为优先组和非优先组,并根据预期的脑电图结果分配 5 个亚级中的一个。脑电图由一位单一的临床神经生理学顾问报告。

结果

分诊将 757 例(41%)脑电图转诊指定为非优先。除了 18 个月至 3.5 岁的儿童外,所有年龄组的优先转诊均超过非优先转诊。对于优先转诊,脑电图显示出两倍高的发作间期癫痫样异常发生率(36% vs 18%,p<0.001)。发作间期癫痫样异常的发生率与分诊的 5 个亚级相关(p<0.01)。对于 5 岁以上的儿童,癫痫样异常的检出率最高(39%),而对于 5 岁以下的儿童,检出率为 17%(p<0.00001);对于优先转诊的儿童,这两个数字分别增加到 49%和 20%。

结论

对脑电图转诊进行结构化的预测试分诊可以识别出最有可能出现癫痫样异常的儿童。在儿科转诊的混合人群中,对于有适当脑电图指征的 5 岁以上儿童,首次脑电图的癫痫样异常检出率为 49%。对于非优先转诊的 5 岁以下儿童,癫痫样异常检出率可能低至 13%,存在很大的变异性。使用结构化的分诊算法可以帮助在实验室能力有限的情况下优化脑电图的效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验