Suppr超能文献

可调节介孔 ZnO 包覆金属纳米颗粒的厚度以增强可见光驱动的光电化学水分解。

Tunable thickness of mesoporous ZnO-coated metal nanoparticles for enhanced visible-light driven photoelectrochemical water splitting.

机构信息

School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China; Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang, 050043, China.

School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.

出版信息

Chemosphere. 2021 Jun;273:129679. doi: 10.1016/j.chemosphere.2021.129679. Epub 2021 Jan 19.

Abstract

The insufficient utilization of sunlight of ZnO, due to its broad band gap, results in low efficiency for photocatalytic hydrogen production. In this work, plasmonic noble metal nanoparticles (NPs) with different shapes (spheres and rods) were combined with mesoporous ZnO forming core-shell nanostructure to enhance the photocatalytic efficiency of ZnO in visible-light region. The photoelectrochemical water splitting activities of the metal@ZnO core-shell nanocomposites (NCs) were investigated. The photocurrent response of metal@ZnO NCs was found higher than pure ZnO or the mixture of metal NPs and ZnO ascribed to the effective charge transfer mechanism. It was also found that the photocurrent of metal@ZnO NCs was related to the thickness of ZnO and there was optimized shell for each kind of metal cores. Moreover, the introduction of Ag shell can get a higher photoelectrocatalytic efficiency compared to pure Au NPs core due to lower Schottky barrier between Ag and ZnO and wider extinction range in the visible light of Au@Ag NPs.

摘要

由于 ZnO 的宽带隙,其对阳光的利用不足,导致光催化制氢效率低下。在这项工作中,将具有不同形状(球体和棒体)的等离子体贵金属纳米粒子 (NPs) 与介孔 ZnO 结合,形成核壳纳米结构,以提高 ZnO 在可见光区的光催化效率。研究了金属@ZnO 核壳纳米复合材料 (NCs) 的光电化学水分解活性。发现金属@ZnO NCs 的光电流响应高于纯 ZnO 或金属 NPs 和 ZnO 的混合物,这归因于有效的电荷转移机制。还发现,金属@ZnO NCs 的光电流与 ZnO 的厚度有关,对于每种金属核,都存在优化的壳层。此外,由于 Ag 和 ZnO 之间的肖特基势垒较低,以及 Au@Ag NPs 在可见光范围内的消光范围较宽,因此引入 Ag 壳可以获得比纯 Au NPs 核更高的光电催化效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验