Suppr超能文献

基于 iPSC 的唾液酸贮积症神经模型揭示了糖酵解损伤导致的突触前功能障碍和钙动力学失调。

An iPSC-based neural model of sialidosis uncovers glycolytic impairment-causing presynaptic dysfunction and deregulation of Ca dynamics.

机构信息

Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Ibaraki, Japan.

Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.

出版信息

Neurobiol Dis. 2021 May;152:105279. doi: 10.1016/j.nbd.2021.105279. Epub 2021 Jan 29.

Abstract

Sialidosis is a neuropathic lysosomal storage disease caused by a deficiency in the NEU1 gene-encoding lysosomal neuraminidase and characterized by abnormal accumulation of undigested sialyl-oligoconjugates in systemic organs including brain. Although patients exhibit neurological symptoms, the underlying neuropathological mechanism remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts with sialidosis and induced the differentiation into neural progenitor cells (NPCs) and neurons. Sialidosis NPCs and neurons mimicked the disease-like phenotypes including reduced neuraminidase activity, accumulation of sialyl-oligoconjugates and lysosomal expansions. Functional analysis also revealed that sialidosis neurons displayed two distinct abnormalities, defective exocytotic glutamate release and augmented α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)-mediated Ca influx. These abnormalities were restored by overexpression of the wild-type NEU1 gene, demonstrating causative role of neuraminidase deficiency in functional impairments of disease neurons. Comprehensive proteomics analysis revealed the significant reduction of SNARE proteins and glycolytic enzymes in synaptosomal fraction, with downregulation of ATP production. Bypassing the glycolysis by treatment of pyruvate, which is final metabolite of glycolysis pathway, improved both the synaptsomal ATP production and the exocytotic function. We also found that upregulation of AMPAR and L-type voltage dependent Ca channel (VDCC) subunits in disease neurons, with the restoration of AMPAR-mediated Ca over-load by treatment of antagonists for the AMPAR and L-type VDCC. Our present study provides new insights into both the neuronal pathophysiology and potential therapeutic strategy for sialidosis.

摘要

唾液酸贮积症是一种神经病变溶酶体贮积病,由溶酶体神经氨酸酶编码基因 NEU1 的缺乏引起,其特征是未消化的唾液酸寡糖缀合物在包括大脑在内的全身器官中的异常积累。尽管患者表现出神经症状,但潜在的神经病理学机制尚不清楚。在这里,我们从唾液酸贮积症的皮肤成纤维细胞中生成诱导多能干细胞(iPSC),并诱导其分化为神经祖细胞(NPC)和神经元。唾液酸贮积症 NPC 和神经元模拟了疾病样表型,包括神经氨酸酶活性降低、唾液酸寡糖缀合物积累和溶酶体扩张。功能分析还表明,唾液酸贮积症神经元表现出两种明显的异常,即胞吐谷氨酸释放缺陷和 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)介导的 Ca2+内流增加。这些异常通过过表达野生型 NEU1 基因得到恢复,表明神经氨酸酶缺乏在疾病神经元的功能损伤中起因果作用。全面的蛋白质组学分析显示,突触小体部分的 SNARE 蛋白和糖酵解酶显著减少,导致 ATP 产生减少。通过丙酮酸治疗绕过糖酵解,丙酮酸是糖酵解途径的最终代谢产物,改善了突触小体的 ATP 产生和胞吐作用。我们还发现,疾病神经元中 AMPAR 和 L 型电压依赖性钙通道(VDCC)亚基上调,用 AMPAR 和 L 型 VDCC 的拮抗剂处理可恢复 AMPAR 介导的 Ca2+过载。我们的研究为唾液酸贮积症的神经元病理生理学和潜在的治疗策略提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验