Pan Deng, Xu Hongxing, García de Abajo F Javier
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Sci Adv. 2021 Jan 6;7(2). doi: 10.1126/sciadv.abd6705. Print 2021 Jan.
Doppler cooling is a widely used technique to laser cool atoms, molecules, and nanoparticles by exploiting the Doppler shift associated with translational motion. The rotational Doppler effect arising from rotational coordinate transformation should similarly enable optical manipulation of the rotational motion of nanosystems. Here, we show that rotational Doppler cooling and heating (RDC and RDH) effects embody rich and unexplored physics, including an unexpected strong dependence on particle morphology. For geometrically constrained particles, cooling and heating are observed at red- or blue-detuned laser frequencies relative to particle resonances. In contrast, for nanosystems that can be modeled as solid particles, RDH appears close to resonant illumination, while detuned frequencies produce cooling of rotation. We further predict that RDH can lead to optomechanical spontaneous chiral symmetry breaking, where an achiral particle under linearly polarized illumination starts spontaneously rotating. Our results open up new exciting possibilities to control the rotational motion of nanosystems.
多普勒冷却技术是一种广泛应用的通过利用与平动相关的多普勒频移来激光冷却原子、分子和纳米粒子的技术。由旋转坐标变换产生的旋转多普勒效应同样应能实现对纳米系统旋转运动的光学操控。在此,我们表明旋转多普勒冷却和加热(RDC和RDH)效应体现了丰富且未被探索的物理现象,包括对粒子形态的意外强烈依赖。对于几何形状受限的粒子,在相对于粒子共振的红失谐或蓝失谐激光频率下观察到冷却和加热现象。相比之下,对于可建模为固体粒子的纳米系统,RDH出现在接近共振照明的情况下,而失谐频率则会导致旋转冷却。我们进一步预测,RDH可导致光机械自发手性对称性破缺,即非手性粒子在线偏振照明下开始自发旋转。我们的结果为控制纳米系统的旋转运动开辟了新的令人兴奋的可能性。