Suppr超能文献

超强超晶纳米复合材料中的缺陷与可塑性

Defects and plasticity in ultrastrong supercrystalline nanocomposites.

作者信息

Giuntini D, Zhao S, Krekeler T, Li M, Blankenburg M, Bor B, Schaan G, Domènech B, Müller M, Scheider I, Ritter M, Schneider G A

机构信息

Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg, Germany.

Department of Materials Science and Engineering, University of California, Berkeley, Berkeley 94720, USA.

出版信息

Sci Adv. 2021 Jan 8;7(2). doi: 10.1126/sciadv.abb6063. Print 2021 Jan.

Abstract

Supercrystalline nanocomposites are nanoarchitected materials with a growing range of applications but unexplored in their structural behavior. They typically consist of organically functionalized inorganic nanoparticles arranged into periodic structures analogous to crystalline lattices, including superlattice imperfections induced by processing or mechanical loading. Although featuring a variety of promising functional properties, their lack of mechanical robustness and unknown deformation mechanisms hamper their implementation into devices. We show that supercrystalline materials react to indentation with the same deformation patterns encountered in single crystals. Supercrystals accommodate plastic deformation in the form of pile-ups, dislocations, and slip bands. These phenomena occur, at least partially, also after cross-linking of the organic ligands, which leads to a multifold strengthening of the nanocomposites. The classic shear theories of crystalline materials are found to describe well the behavior of supercrystalline nanocomposites, which result to feature an elastoplastic behavior, accompanied by compaction.

摘要

超晶态纳米复合材料是一种纳米结构材料,其应用范围不断扩大,但结构行为尚未得到探索。它们通常由有机功能化的无机纳米颗粒组成,这些颗粒排列成类似于晶格的周期性结构,包括由加工或机械加载引起的超晶格缺陷。尽管具有各种有前景的功能特性,但它们缺乏机械强度和未知的变形机制阻碍了它们在器件中的应用。我们表明,超晶态材料对压痕的反应与单晶中遇到的变形模式相同。超晶体以堆积、位错和滑移带的形式适应塑性变形。这些现象至少部分地也发生在有机配体交联之后,这导致纳米复合材料的多重强化。发现晶体材料的经典剪切理论能够很好地描述超晶态纳米复合材料的行为,其结果是具有弹塑性行为,并伴有压实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8221/7793591/32ef71c1af56/abb6063-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验