Suppr超能文献

空肠弯曲菌荚膜庚糖修饰途径中 C3/C5 差向异构酶和 C4 还原酶的结构-功能研究。

Structure-function studies of the C3/C5 epimerases and C4 reductases of the Campylobacter jejuni capsular heptose modification pathways.

机构信息

Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.

Biomedical Sciences Research Complex, St Andrews University, St Andrews, UK.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100352. doi: 10.1016/j.jbc.2021.100352. Epub 2021 Jan 30.

Abstract

Many bacteria produce polysaccharide-based capsules that protect them from environmental insults and play a role in virulence, host invasion, and other functions. Understanding how the polysaccharide components are synthesized could provide new means to combat bacterial infections. We have previously characterized two pairs of homologous enzymes involved in the biosynthesis of capsular sugar precursors GDP-6-deoxy-D-altro-heptose and GDP-6-OMe-L-gluco-heptose in Campylobacter jejuni. However, the substrate specificity and mechanism of action of these enzymes-C3 and/or C5 epimerases DdahB and MlghB and C4 reductases DdahC and MlghC-are unknown. Here, we demonstrate that these enzymes are highly specific for heptose substrates, using mannose substrates inefficiently with the exception of MlghB. We show that DdahB and MlghB feature a jellyroll fold typical of cupins, which possess a range of activities including epimerizations, GDP occupying a similar position as in cupins. DdahC and MlghC contain a Rossman fold, a catalytic triad, and a small C-terminal domain typical of short-chain dehydratase reductase enzymes. Integrating structural information with site-directed mutagenesis allowed us to identify features unique to each enzyme and provide mechanistic insight. In the epimerases, mutagenesis of H67, D173, N121, Y134, and Y132 suggested the presence of alternative catalytic residues. We showed that the reductases could reduce GDP-4-keto-6-deoxy-mannulose without prior epimerization although DdahC preferred the pre-epimerized substrate and identified T110 and H180 as important for substrate specificity and catalytic efficacy. This information can be exploited to identify inhibitors for therapeutic applications or to tailor these enzymes to synthesize novel sugars useful as glycobiology tools.

摘要

许多细菌产生基于多糖的荚膜,以保护它们免受环境侵害,并在毒力、宿主入侵和其他功能中发挥作用。了解多糖成分是如何合成的,可以为对抗细菌感染提供新的手段。我们之前已经描述了参与空肠弯曲菌荚糖前体 GDP-6-脱氧-D--altro-庚糖和 GDP-6-OMe-L-葡萄糖庚糖生物合成的两对同源酶。然而,这些酶(C3 和/或 C5 差向异构酶 DdahB 和 MlghB 以及 C4 还原酶 DdahC 和 MlghC)的底物特异性和作用机制尚不清楚。在这里,我们证明这些酶对庚糖底物具有高度特异性,除了 MlghB 之外,它们对甘露糖底物的利用效率较低。我们表明 DdahB 和 MlghB 具有典型的杯状结构,该结构具有多种活性,包括差向异构化,GDP 占据了与杯状结构类似的位置。DdahC 和 MlghC 包含 Rossman 折叠、催化三联体和典型的短链脱水酶还原酶的小 C 端结构域。将结构信息与定点突变结合起来,使我们能够识别每种酶的独特特征,并提供机制上的见解。在差向异构酶中,H67、D173、N121、Y134 和 Y132 的突变表明存在替代催化残基。我们表明,还原酶可以在没有预先差向异构化的情况下还原 GDP-4-酮-6-脱氧-甘露糖,尽管 DdahC 更喜欢预差向异构化的底物,并确定 T110 和 H180 对底物特异性和催化效率很重要。这些信息可以用于鉴定治疗应用的抑制剂,或对这些酶进行定制,以合成作为糖生物学工具有用的新型糖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac75/7949155/cb6e2134f5b1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验