Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
J Theor Biol. 2021 May 7;516:110607. doi: 10.1016/j.jtbi.2021.110607. Epub 2021 Jan 30.
Olfaction informs animal navigation for foraging, social interaction, and threat evasion. However, turbulent flow on the spatial scales of most animal navigation leads to intermittent odor information and presents a challenge to simple gradient-ascent navigation. Here we present two strategies for iterative gradient estimation and navigation via olfactory cues in 2D space: tropotaxis, spatial concentration comparison (i.e., instantaneous comparison between lateral olfactory sensors on a navigating animal) and klinotaxis, spatiotemporal concentration comparison (i.e., comparison between two subsequent concentration samples as the animal moves through space). We then construct a hybrid model that uses klinotaxis but utilizes tropotactic information to guide its spatial sampling strategy. We find that for certain body geometries in which bilateral sensors are closely-spaced (e.g., mammalian nares), klinotaxis outperforms tropotaxis; for widely-spaced sensors (e.g., arthropod antennae), tropotaxis outperforms klinotaxis. We find that both navigation strategies perform well on smooth odor gradients and are robust against noisy gradients represented by stochastic odor models and real turbulent flow data. In some parameter regimes, the hybrid model outperforms klinotaxis alone, but not tropotaxis.
嗅觉为动物的觅食、社交互动和逃避威胁提供了导航信息。然而,在大多数动物导航的空间尺度上,湍流会导致间歇性的气味信息,这给简单的梯度上升导航带来了挑战。在这里,我们提出了两种在 2D 空间中通过嗅觉线索进行迭代梯度估计和导航的策略:趋触性,空间浓度比较(即在导航动物的侧线嗅觉传感器之间进行瞬时比较)和趋旋性,时空浓度比较(即当动物在空间中移动时,在两个连续的浓度样本之间进行比较)。然后,我们构建了一个混合模型,该模型使用趋旋性,但利用趋触性信息来指导其空间采样策略。我们发现,对于某些身体几何形状,其中双侧传感器紧密间隔(例如哺乳动物的鼻腔),趋旋性优于趋触性;对于间隔较大的传感器(例如节肢动物的触角),趋触性优于趋旋性。我们发现,这两种导航策略在平滑的气味梯度上表现良好,并且对随机气味模型和真实湍流数据表示的噪声梯度具有鲁棒性。在某些参数范围内,混合模型的性能优于单独的趋旋性,但不如趋触性。