Suppr超能文献

基于正则正交分解的改进马氏距离-田口系统在高维小样本数据分类中的应用。

Modified Mahalanobis-Taguchi System based on proper orthogonal decomposition for high-dimensional-small-sample-size data classification.

机构信息

School of Economics and Management, China Jiliang University, Hangzhou 310000, China.

China National Institute of Standardization, Beijing 100000, China.

出版信息

Math Biosci Eng. 2020 Dec 7;18(1):426-444. doi: 10.3934/mbe.2021023.

Abstract

Mahalanobis-Taguchi System (MTS) is an effective algorithm for dimensionality reduction, feature extraction and classification of data in a multidimensional system. However, when applied to the field of high-dimensional small sample data, MTS has challenges in calculating the Mahalanobis distance due to the singularity of the covariance matrix. To this end, we construct a modified Mahalanobis-Taguchi System (MMTS) by introducing the idea of proper orthogonal decomposition (POD). The constructed MMTS expands the application scope of MTS, taking into account correlations between variables and the influence of dimensionality. It can not only retain most of the original sample information features, but also achieve a substantial reduction in dimensionality, showing excellent classification performance. The results show that, compared with expert classification, individual classifiers such as NB, RF, k-NN, SVM and superimposed classifiers such as Wrapper + RF, MRMR + SVM, Chi-square + BP, SMOTE + Wrapper + RF and SMOTE + MRMR + SVM, MMTS has a better classification performance when extracting orthogonal decomposition vectors with eigenvalues greater than 0.001.

摘要

马氏距离-田口系统(MTS)是多维系统中数据降维、特征提取和分类的有效算法。然而,当应用于高维小样本数据领域时,由于协方差矩阵的奇异性,MTS 在计算马氏距离时存在挑战。为此,我们通过引入适当正交分解(POD)的思想,构建了改进的马氏距离-田口系统(MMTS)。所构建的 MMTS 扩展了 MTS 的应用范围,考虑了变量之间的相关性和维度的影响。它不仅可以保留大部分原始样本信息特征,而且可以实现维度的大幅降低,表现出优异的分类性能。结果表明,与专家分类相比,当提取特征值大于 0.001 的正交分解向量时,NB、RF、k-NN、SVM 等单个分类器以及 Wrapper+RF、MRMR+SVM、Chi-square+BP、SMOTE+Wrapper+RF 和 SMOTE+MRMR+SVM 等叠加分类器的 MMTS 具有更好的分类性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验