School of Economics and Management, China Jiliang University, Hangzhou 310000, China.
China National Institute of Standardization, Beijing 100000, China.
Math Biosci Eng. 2020 Dec 7;18(1):426-444. doi: 10.3934/mbe.2021023.
Mahalanobis-Taguchi System (MTS) is an effective algorithm for dimensionality reduction, feature extraction and classification of data in a multidimensional system. However, when applied to the field of high-dimensional small sample data, MTS has challenges in calculating the Mahalanobis distance due to the singularity of the covariance matrix. To this end, we construct a modified Mahalanobis-Taguchi System (MMTS) by introducing the idea of proper orthogonal decomposition (POD). The constructed MMTS expands the application scope of MTS, taking into account correlations between variables and the influence of dimensionality. It can not only retain most of the original sample information features, but also achieve a substantial reduction in dimensionality, showing excellent classification performance. The results show that, compared with expert classification, individual classifiers such as NB, RF, k-NN, SVM and superimposed classifiers such as Wrapper + RF, MRMR + SVM, Chi-square + BP, SMOTE + Wrapper + RF and SMOTE + MRMR + SVM, MMTS has a better classification performance when extracting orthogonal decomposition vectors with eigenvalues greater than 0.001.
马氏距离-田口系统(MTS)是多维系统中数据降维、特征提取和分类的有效算法。然而,当应用于高维小样本数据领域时,由于协方差矩阵的奇异性,MTS 在计算马氏距离时存在挑战。为此,我们通过引入适当正交分解(POD)的思想,构建了改进的马氏距离-田口系统(MMTS)。所构建的 MMTS 扩展了 MTS 的应用范围,考虑了变量之间的相关性和维度的影响。它不仅可以保留大部分原始样本信息特征,而且可以实现维度的大幅降低,表现出优异的分类性能。结果表明,与专家分类相比,当提取特征值大于 0.001 的正交分解向量时,NB、RF、k-NN、SVM 等单个分类器以及 Wrapper+RF、MRMR+SVM、Chi-square+BP、SMOTE+Wrapper+RF 和 SMOTE+MRMR+SVM 等叠加分类器的 MMTS 具有更好的分类性能。