Suppr超能文献

基于深度学习的早期胚胎图像增强快速多焦点融合。

Fast Multi-Focus Fusion Based on Deep Learning for Early-Stage Embryo Image Enhancement.

机构信息

Department of Automation, Kaunas University of Technology, Studentu 48, 51367 Kaunas, Lithuania.

Department of Applied Informatics, Kaunas University of Technology, Studentu 50, 51368 Kaunas, Lithuania.

出版信息

Sensors (Basel). 2021 Jan 28;21(3):863. doi: 10.3390/s21030863.

Abstract

BACKGROUND

Cell detection and counting is of essential importance in evaluating the quality of early-stage embryo. Full automation of this process remains a challenging task due to different cell size, shape, the presence of incomplete cell boundaries, partially or fully overlapping cells. Moreover, the algorithm to be developed should process a large number of image data of different quality in a reasonable amount of time.

METHODS

Multi-focus image fusion approach based on deep learning U-Net architecture is proposed in the paper, which allows reducing the amount of data up to 7 times without losing spectral information required for embryo enhancement in the microscopic image.

RESULTS

The experiment includes the visual and quantitative analysis by estimating the image similarity metrics and processing times, which is compared to the results achieved by two wellknown techniques-Inverse Laplacian Pyramid Transform and Enhanced Correlation Coefficient Maximization.

CONCLUSION

Comparatively, the image fusion time is substantially improved for different image resolutions, whilst ensuring the high quality of the fused image.

摘要

背景

细胞检测和计数对于评估早期胚胎的质量至关重要。由于细胞大小、形状不同,细胞边界不完整,部分或完全重叠,因此该过程的完全自动化仍然是一项具有挑战性的任务。此外,所开发的算法应该能够在合理的时间内处理大量不同质量的图像数据。

方法

本文提出了一种基于深度学习 U-Net 架构的多焦点图像融合方法,该方法允许在不丢失显微镜图像中增强胚胎所需的光谱信息的情况下,将数据量减少多达 7 倍。

结果

该实验包括通过估计图像相似性度量和处理时间进行的视觉和定量分析,并与两种知名技术——逆拉普拉斯金字塔变换和增强相关系数最大化的结果进行了比较。

结论

与这两种技术相比,不同图像分辨率下的图像融合时间大大提高,同时确保了融合图像的高质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/910d/7865517/0265e74fa669/sensors-21-00863-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验