Khosravi Pegah, Kazemi Ehsan, Zhan Qiansheng, Malmsten Jonas E, Toschi Marco, Zisimopoulos Pantelis, Sigaras Alexandros, Lavery Stuart, Cooper Lee A D, Hickman Cristina, Meseguer Marcos, Rosenwaks Zev, Elemento Olivier, Zaninovic Nikica, Hajirasouliha Iman
1Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine of Cornell University, New York, NY USA.
2Caryl and Israel Englander Institute for Precision Medicine, The Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA.
NPJ Digit Med. 2019 Apr 4;2:21. doi: 10.1038/s41746-019-0096-y. eCollection 2019.
Visual morphology assessment is routinely used for evaluating of embryo quality and selecting human blastocysts for transfer after in vitro fertilization (IVF). However, the assessment produces different results between embryologists and as a result, the success rate of IVF remains low. To overcome uncertainties in embryo quality, multiple embryos are often implanted resulting in undesired multiple pregnancies and complications. Unlike in other imaging fields, human embryology and IVF have not yet leveraged artificial intelligence (AI) for unbiased, automated embryo assessment. We postulated that an AI approach trained on thousands of embryos can reliably predict embryo quality without human intervention. We implemented an AI approach based on deep neural networks (DNNs) to select highest quality embryos using a large collection of human embryo time-lapse images (about 50,000 images) from a high-volume fertility center in the United States. We developed a framework (STORK) based on Google's Inception model. STORK predicts blastocyst quality with an AUC of >0.98 and generalizes well to images from other clinics outside the US and outperforms individual embryologists. Using clinical data for 2182 embryos, we created a decision tree to integrate embryo quality and patient age to identify scenarios associated with pregnancy likelihood. Our analysis shows that the chance of pregnancy based on individual embryos varies from 13.8% (age ≥41 and poor-quality) to 66.3% (age <37 and good-quality) depending on automated blastocyst quality assessment and patient age. In conclusion, our AI-driven approach provides a reproducible way to assess embryo quality and uncovers new, potentially personalized strategies to select embryos.
视觉形态学评估通常用于评估胚胎质量,并在体外受精(IVF)后选择人类囊胚进行移植。然而,胚胎学家之间的评估结果存在差异,因此,IVF的成功率仍然很低。为了克服胚胎质量的不确定性,通常会植入多个胚胎,导致意外的多胎妊娠和并发症。与其他成像领域不同,人类胚胎学和IVF尚未利用人工智能(AI)进行无偏差、自动化的胚胎评估。我们推测,一种在数千个胚胎上训练的人工智能方法可以在无需人工干预的情况下可靠地预测胚胎质量。我们基于深度神经网络(DNN)实施了一种人工智能方法,使用来自美国一家高容量生育中心的大量人类胚胎延时图像(约50000张图像)来选择质量最高的胚胎。我们基于谷歌的Inception模型开发了一个框架(STORK)。STORK预测囊胚质量的AUC大于0.98,并且能很好地推广到美国以外其他诊所的图像,其表现优于个体胚胎学家。利用2182个胚胎的临床数据,我们创建了一个决策树,将胚胎质量和患者年龄整合起来,以确定与妊娠可能性相关的情况。我们的分析表明,根据自动化囊胚质量评估和患者年龄,单个胚胎的妊娠几率从13.8%(年龄≥41岁且质量差)到66.3%(年龄<37岁且质量好)不等。总之,我们的人工智能驱动方法提供了一种可重复的方式来评估胚胎质量,并揭示了新的、可能个性化的胚胎选择策略。