Suppr超能文献

利用 QCM-D、MP-SPR 和 FTIR 研究溶菌酶在金表面的吸附和构象行为。

Adsorption and Conformation Behavior of Lysozyme on a Gold Surface Determined by QCM-D, MP-SPR, and FTIR.

机构信息

Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland.

Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK.

出版信息

Int J Mol Sci. 2021 Jan 28;22(3):1322. doi: 10.3390/ijms22031322.

Abstract

The physicochemical properties of protein layers at the solid-liquid interface are essential in many biological processes. This study aimed to link the structural analysis of adsorbed lysozyme at the water/gold surface at pH 7.5 in a wide range of concentrations. Particular attention was paid to the protein's structural stability and the hydration of the protein layers formed at the interface. Complementary methods such as multi-parameter surface plasmon resonance (MP-SPR), quartz crystal microbalance with energy dissipation (QCM-D), and infrared spectroscopy (FTIR) were used for this purpose. The MP-SPR and QCM-D studies showed that, during the formation of a monolayer on the gold surface, the molecules' orientation changes from side-on to end-on. In addition, bilayer formation is observed when adsorbing in the high-volume concentration range >500 ppm. The degree of hydration of the monolayer and bilayer varies depending on the degree of surface coverage. The hydration of the system decreases with filling the layer in both the monolayer and the bilayer. Hydration for the monolayer varies in the range of 50-70%, because the bilayer is much higher than 80%. The degree of hydration of the adsorption layer has a crucial influence on the protein layers' viscoelastic properties. In general, an increase in the filling of a layer is characterized by a rise in its rigidity. The use of infrared spectroscopy allowed us to determine the changes taking place in the secondary structure of lysozyme due to its interaction with the gold surface. Upon adsorption, the content of II-structures corresponding to β-turn and random lysozyme structures increases, with a simultaneous decrease in the content of the β-sheet. The increase in the range of β-turn in the structure determines the lysozyme structure's stability and prevents its aggregation.

摘要

蛋白质在固液界面的物理化学性质在许多生物过程中至关重要。本研究旨在将在广泛浓度范围内 pH 7.5 下水/金表面吸附溶菌酶的结构分析联系起来。特别关注蛋白质的结构稳定性和界面形成的蛋白质层的水合作用。为此目的,使用了多种参数表面等离子体共振(MP-SPR)、石英晶体微天平与能量耗散(QCM-D)和红外光谱(FTIR)等互补方法。MP-SPR 和 QCM-D 研究表明,在金表面形成单层的过程中,分子的取向从侧到端发生变化。此外,在高体积浓度范围>500ppm 吸附时观察到双层形成。单层和双层的水合程度取决于表面覆盖率的程度。单层和双层的水化程度随层的填充而降低。单层的水合度在 50-70%范围内变化,因为双层的水合度远高于 80%。吸附层的水合度对蛋白质层的粘弹性性质有至关重要的影响。一般来说,层填充度的增加以其刚性的增加为特征。红外光谱的使用使我们能够确定溶菌酶由于与金表面相互作用而发生的二级结构变化。吸附时,对应于β-转角和无规溶菌酶结构的 II 结构的含量增加,同时β-折叠的含量减少。结构中β-转角范围的增加决定了溶菌酶结构的稳定性并防止其聚集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a5/7865459/f7e86bb85a53/ijms-22-01322-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验