Kang Hyun-Seo, Sattler Michael
Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
Center for Integrated Protein Science (CiPSM) at Biomolecular NMR, Department of Chemie, Technische Universität München, 85747 Garching, Germany.
Emerg Top Life Sci. 2018 Apr 20;2(1):107-119. doi: 10.1042/ETLS20170090.
In recent years, a dynamic view of the structure and function of biological macromolecules is emerging, highlighting an essential role of dynamic conformational equilibria to understand molecular mechanisms of biological functions. The structure of a biomolecule, i.e. protein or nucleic acid in solution, is often best described as a dynamic ensemble of conformations, rather than a single structural state. Strikingly, the molecular interactions and functions of the biological macromolecule can then involve a shift between conformations that pre-exist in such an ensemble. Upon external cues, such population shifts of pre-existing conformations allow gradually relaying the signal to the downstream biological events. An inherent feature of this principle is conformational dynamics, where intrinsically disordered regions often play important roles to modulate the conformational ensemble. Unequivocally, solution-state NMR spectroscopy is a powerful technique to study the structure and dynamics of such biomolecules in solution. NMR is increasingly combined with complementary techniques, including fluorescence spectroscopy and small angle scattering. The combination of these techniques provides complementary information about the conformation and dynamics in solution and thus affords a comprehensive description of biomolecular functions and regulations. Here, we illustrate how an integrated approach combining complementary techniques can assess the structure and dynamics of proteins and protein complexes in solution.
近年来,关于生物大分子结构与功能的动态观点正在兴起,强调了动态构象平衡对于理解生物功能分子机制的重要作用。生物分子(即溶液中的蛋白质或核酸)的结构通常最好被描述为构象的动态集合,而非单一的结构状态。引人注目的是,生物大分子的分子相互作用和功能可能涉及在这样一个集合中预先存在的构象之间的转变。在外部线索作用下,这种预先存在构象的群体转移使得信号能够逐渐传递至下游生物事件。这一原理的一个固有特征是构象动力学,其中内在无序区域常常在调节构象集合方面发挥重要作用。毫无疑问,溶液态核磁共振光谱是研究此类溶液中生物分子结构与动力学的强大技术。核磁共振正越来越多地与包括荧光光谱和小角散射在内的互补技术相结合。这些技术的结合提供了关于溶液中构象和动力学的互补信息,从而能够全面描述生物分子的功能和调控。在此,我们阐述了结合互补技术的综合方法如何能够评估溶液中蛋白质和蛋白质复合物的结构与动力学。