Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
Acta Pharmacol Sin. 2021 May;42(5):679-690. doi: 10.1038/s41401-020-00576-2. Epub 2021 Feb 1.
Over the last decade, the roles of β-arrestins in the treatment of neuropsychological diseases have become increasingly appreciated. Fluoxetine is the first selective serotonin reuptake inhibitor developed and is approved for the clinical treatment of depression. Emerging evidence suggests that fluoxetine can directly combine with the 5-HT receptor, which is a member of the G protein-coupled receptor (GPCR) family, in addition to suppressing the serotonin transporter. In this study, we prepared a chronic mild stress (CMS)-induced depression model with β-arrestin2 mice and cultured adult neural stem cells (ANSCs) to investigate the involvement of the 5-HT receptor-β-arrestin axis in the pathogenesis of depression and in the therapeutic effect of fluoxetine. We found that β-arrestin2 deletion abolished the fluoxetine-mediated improvement in depression-like behaviors and monoamine neurotransmitter levels, although β-arrestin2 knockout did not aggravate CMS-induced changes in mouse behaviors and neurotransmitters. Notably, the β-arrestin2 mice had a shortened dendritic length and reduced dendritic spine density, as well as decreased neural precursor cells, compared to the WT mice under both basal and CMS conditions. We further found that β-arrestin2 knockout decreased the number of proliferating cells in the hippocampal dentate gyrus and suppressed the proliferative capability of ANSCs in vitro. Moreover, β-arrestin2 knockout aggravated the impairment of cell proliferation induced by corticosterone and further blocked the fluoxetine-mediated promotion of mouse hippocampal neurogenesis. Mechanistically, we found that the 5-HTR-β-arrestin2-PI3K/Akt axis is essential to maintain the modulation of hippocampal neurogenesis in depressed mice. Our study may provide a promising target for the development of new antidepressant drugs.
在过去的十年中,β-arrestins 在神经心理疾病治疗中的作用越来越受到重视。氟西汀是开发的第一种选择性 5-羟色胺再摄取抑制剂,已被批准用于临床抑郁症的治疗。新出现的证据表明,氟西汀除了抑制 5-羟色胺转运体外,还可以直接与 5-HT 受体(属于 G 蛋白偶联受体(GPCR)家族的一员)结合。在这项研究中,我们使用β-arrestin2 敲除小鼠和培养的成年神经干细胞(ANSCs)制备了慢性轻度应激(CMS)诱导的抑郁症模型,以研究 5-HT 受体-β-arrestin 轴在抑郁症发病机制中的作用以及氟西汀的治疗效果。我们发现,β-arrestin2 缺失消除了氟西汀介导的改善抑郁样行为和单胺神经递质水平的作用,尽管β-arrestin2 敲除并没有加重 CMS 诱导的小鼠行为和神经递质变化。值得注意的是,与 WT 小鼠相比,β-arrestin2 敲除小鼠在基础和 CMS 条件下的树突长度缩短,树突棘密度降低,神经前体细胞减少。我们进一步发现,β-arrestin2 敲除减少了海马齿状回中增殖细胞的数量,并抑制了 ANSCs 的体外增殖能力。此外,β-arrestin2 敲除加重了皮质酮诱导的细胞增殖损伤,并进一步阻断了氟西汀介导的促进小鼠海马神经发生的作用。从机制上讲,我们发现 5-HTR-β-arrestin2-PI3K/Akt 轴对于维持抑郁小鼠海马神经发生的调节是必不可少的。我们的研究可能为开发新的抗抑郁药物提供有希望的靶点。