Department of Pathology, School of Medicine and Health Sciences, Department of Computer Science, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND, USA.
Division of Intramural Research, National Institutes of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA.
Commun Biol. 2021 Feb 1;4(1):150. doi: 10.1038/s42003-021-01651-y.
The use of digital pathology for the histomorphologic profiling of pathological specimens is expanding the precision and specificity of quantitative tissue analysis at an unprecedented scale; thus, enabling the discovery of new and functionally relevant histological features of both predictive and prognostic significance. In this study, we apply quantitative automated image processing and computational methods to profile the subcellular distribution of the multi-functional transcriptional regulator, Kaiso (ZBTB33), in the tumors of a large racially diverse breast cancer cohort from a designated health disparities region in the United States. Multiplex multivariate analysis of the association of Kaiso's subcellular distribution with other breast cancer biomarkers reveals novel functional and predictive linkages between Kaiso and the autophagy-related proteins, LC3A/B, that are associated with features of the tumor immune microenvironment, survival, and race. These findings identify effective modalities of Kaiso biomarker assessment and uncover unanticipated insights into Kaiso's role in breast cancer progression.
数字病理学用于病理性标本的组织形态分析,正在以前所未有的规模提高定量组织分析的准确性和特异性;从而发现具有预测和预后意义的新的和功能相关的组织学特征。在这项研究中,我们应用定量自动图像处理和计算方法,对来自美国指定的健康差异区域的一个大型种族多样化乳腺癌队列的肿瘤中多功能转录调节剂 Kaiso(ZBTB33)的亚细胞分布进行分析。Kaiso 的亚细胞分布与其他乳腺癌生物标志物之间关联的多元分析揭示了 Kaiso 与自噬相关蛋白 LC3A/B 之间的新的功能和预测联系,这些联系与肿瘤免疫微环境、生存和种族的特征有关。这些发现确定了 Kaiso 生物标志物评估的有效方式,并揭示了 Kaiso 在乳腺癌进展中的作用的意外见解。