York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK.
Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
Angew Chem Int Ed Engl. 2021 Mar 8;60(11):5754-5758. doi: 10.1002/anie.202013920. Epub 2021 Feb 2.
The recent discovery of zinc-dependent retaining glycoside hydrolases (GHs), with active sites built around a Zn(Cys) (Glu) coordination complex, has presented unresolved mechanistic questions. In particular, the proposed mechanism, depending on a Zn-coordinated cysteine nucleophile and passing through a thioglycosyl enzyme intermediate, remains controversial. This is primarily due to the expected stability of the intermediate C-S bond. To facilitate the study of this atypical mechanism, we report the synthesis of a cyclophellitol-derived β-l-arabinofuranosidase inhibitor, hypothesised to react with the catalytic nucleophile to form a non-hydrolysable adduct analogous to the mechanistic covalent intermediate. This β-l-arabinofuranosidase inhibitor reacts exclusively with the proposed cysteine thiol catalytic nucleophiles of representatives of GH families 127 and 146. X-ray crystal structures determined for the resulting adducts enable MD and QM/MM simulations, which provide insight into the mechanism of thioglycosyl enzyme intermediate breakdown. Leveraging the unique chemistry of cyclophellitol derivatives, the structures and simulations presented here support the assignment of a zinc-coordinated cysteine as the catalytic nucleophile and illuminate the finely tuned energetics of this remarkable metalloenzyme clan.
最近发现了依赖锌的保留糖苷水解酶(GHs),其活性位点围绕 Zn(Cys)(Glu) 配位络合物构建,提出了尚未解决的机制问题。特别是,所提出的机制依赖于锌配位半胱氨酸亲核试剂,并经过硫糖苷酶中间体,仍然存在争议。这主要是由于中间 C-S 键的预期稳定性。为了促进对这种非典型机制的研究,我们报告了环磷醇衍生的β-L-阿拉伯呋喃糖苷酶抑制剂的合成,假设该抑制剂与催化亲核试剂反应形成类似机制共价中间产物的不可水解加合物。这种β-L-阿拉伯呋喃糖苷酶抑制剂仅与 GH 家族 127 和 146 的代表物的假定半胱氨酸巯基催化亲核试剂反应。为所得加合物确定的 X 射线晶体结构允许进行 MD 和 QM/MM 模拟,这提供了对硫糖苷酶中间体分解机制的深入了解。利用环磷醇衍生物的独特化学性质,这里呈现的结构和模拟支持将锌配位半胱氨酸指定为催化亲核试剂,并阐明了这个显著的金属酶族的精细能量学。