Department of Medicine, Division of Geriatrics, University of California, San Francisco.
San Francisco Veterans Affairs Medical Center.
Med Care. 2021 May 1;59(5):418-424. doi: 10.1097/MLR.0000000000001510.
Guidelines recommend that clinicians use clinical prediction models to estimate future risk to guide decisions. For example, predicted fracture risk is a major factor in the decision to initiate bisphosphonate medications. However, current methods for developing prediction models often lead to models that are accurate but difficult to use in clinical settings.
The objective of this study was to develop and test whether a new metric that explicitly balances model accuracy with clinical usability leads to accurate, easier-to-use prediction models.
We propose a new metric called the Time-cost Information Criterion (TCIC) that will penalize potential predictor variables that take a long time to obtain in clinical settings. To demonstrate how the TCIC can be used to develop models that are easier-to-use in clinical settings, we use data from the 2000 wave of the Health and Retirement Study (n=6311) to develop and compare time to mortality prediction models using a traditional metric (Bayesian Information Criterion or BIC) and the TCIC.
We found that the TCIC models utilized predictors that could be obtained more quickly than BIC models while achieving similar discrimination. For example, the TCIC identified a 7-predictor model with a total time-cost of 44 seconds, while the BIC identified a 7-predictor model with a time-cost of 119 seconds. The Harrell C-statistic of the TCIC and BIC 7-predictor models did not differ (0.7065 vs. 0.7088, P=0.11).
Accounting for the time-costs of potential predictor variables through the use of the TCIC led to the development of an easier-to-use mortality prediction model with similar discrimination.
指南建议临床医生使用临床预测模型来估计未来风险,以指导决策。例如,预测骨折风险是决定开始使用双膦酸盐药物的主要因素。然而,目前开发预测模型的方法往往导致模型准确性高但在临床环境中难以使用。
本研究旨在开发和测试一种新的度量标准,该标准明确平衡模型准确性和临床可用性,从而导致准确、更易于在临床环境中使用的预测模型。
我们提出了一种新的度量标准,称为时间成本信息准则(TCIC),该准则将惩罚在临床环境中需要花费很长时间才能获得的潜在预测变量。为了演示如何使用 TCIC 来开发更易于在临床环境中使用的模型,我们使用来自 2000 年健康与退休研究(n=6311)的数据,使用传统度量标准(贝叶斯信息准则或 BIC)和 TCIC 开发和比较死亡时间预测模型。
我们发现,TCIC 模型利用的预测因子可以比 BIC 模型更快地获得,同时实现了相似的区分度。例如,TCIC 确定了一个总时间成本为 44 秒的 7 个预测因子模型,而 BIC 确定了一个总时间成本为 119 秒的 7 个预测因子模型。TCIC 和 BIC 7 个预测因子模型的 Harrell C 统计量没有差异(0.7065 与 0.7088,P=0.11)。
通过使用 TCIC 考虑潜在预测变量的时间成本,开发了一种更易于使用的死亡率预测模型,具有相似的区分度。