Suppr超能文献

利用机器学习预测 Tecnis Symfony 白内障手术后的术后焦点深度。

Using machine learning to predict post-operative depth of focus after cataract surgery with implantation of Tecnis Symfony.

机构信息

Cataract Department, Daqing Oilfield General Hospital, Daqing City, Heilongjiang, China.

Medical Device Epidemiology, Johnson & Johnson, New Brunswick, NJ, USA.

出版信息

Eur J Ophthalmol. 2021 Nov;31(6):2938-2946. doi: 10.1177/1120672121991777. Epub 2021 Feb 2.

Abstract

OBJECTIVE

To predict post-operative depth of focus (DoF) using machine learning techniques after cataract surgery with Tecnis Symfony implantation and determine associated impact factors.

METHODS

This was a retrospective cohort study among patients receiving Tecnis Symfony implantation, an extended-range-of-vision intraocular lens, during October 2016-January 2020 at Daqing Oilfield General Hospital, China. Four different predictive models were used to predict good post-operative DoF (⩾2.5 D): Extreme Gradient Boost (XGBoost), random forest (RF), LASSO penalized regression, and multivariable logistic regression (MLR). Apriori algorithm was employed to further explore the association between patient attributes and DoF.

RESULTS

A total of 182 unique cases (143 patients) were included. The XGBoost model produced the best predictive accuracy compared to RF, LASSO, and MLR models. Overall performance of the best fitting XGBoost model was as follows: accuracy = 70.3%, AUC = 80.2%, sensitivity = 65.5%, and specificity = 87.5%. The Apriori algorithm identified six preoparative attributes with substantial effects on good post-operative DoF: low anterior chamber depth (ACD) (1.9 to <2.5 mm), smaller pupil size (1.7 to <2.5 mm), low-to-mid axial length (21 to <23 mm), minimum astigmatism degree (-0.2 to 0 diopter), low IOP (9 to <12 mmHg), and medium lens target refractive error (-0.5 to <-0.25 diopter).

CONCLUSIONS

Machine Learning models were able to predict good post-operative DoF among cataract patients receiving a Tecnis Symfony ocular lens implantation. The accuracy of the model was above 70%. The Apriori algorithm identified six preoperative attributes with a strong association with post-operative DoF.

摘要

目的

使用机器学习技术预测 Tecnis Symfony 植入术后的术后景深(DoF),并确定相关影响因素。

方法

这是一项回顾性队列研究,纳入了 2016 年 10 月至 2020 年 1 月在中国大庆油田总医院接受 Tecnis Symfony 植入术(一种扩展视程人工晶状体)的患者。使用四种不同的预测模型来预测良好的术后 DoF(⩾2.5D):极端梯度提升(XGBoost)、随机森林(RF)、LASSO 惩罚回归和多变量逻辑回归(MLR)。采用 Apriori 算法进一步探讨患者特征与 DoF 之间的关系。

结果

共纳入 182 例(143 例患者)独特病例。与 RF、LASSO 和 MLR 模型相比,XGBoost 模型的预测准确性最高。最佳拟合 XGBoost 模型的整体性能如下:准确率=70.3%,AUC=80.2%,灵敏度=65.5%,特异性=87.5%。Apriori 算法确定了六个对良好术后 DoF 有显著影响的术前特征:低前房深度(ACD)(1.9 至<2.5mm)、较小的瞳孔大小(1.7 至<2.5mm)、中低眼轴长度(21 至<23mm)、最小散光度数(-0.2 至 0 屈光度)、低眼压(9 至<12mmHg)和中等晶状体目标屈光误差(-0.5 至<-0.25 屈光度)。

结论

机器学习模型能够预测接受 Tecnis Symfony 人工晶状体植入术的白内障患者的良好术后 DoF。该模型的准确率在 70%以上。Apriori 算法确定了与术后 DoF 有很强关联的六个术前特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验