Suppr超能文献

ABSSNet:用于交通场景理解的基于注意力的空间分割网络。

ABSSNet: Attention-Based Spatial Segmentation Network for Traffic Scene Understanding.

出版信息

IEEE Trans Cybern. 2022 Sep;52(9):9352-9362. doi: 10.1109/TCYB.2021.3050558. Epub 2022 Aug 18.

Abstract

The location information of road and lane lines is the supremely important thing for the automatic drive and auxiliary drive. The detection accuracy of these two elements dramatically affects the reliability and practicality of the whole system. In real applications, the traffic scene can be very complicated, which makes it particularly challenging to obtain the precise location of road and lane lines. Commonly used deep learning-based object detection models perform pretty well on the lane line and road detection tasks, but they still encounter false detection and missing detection frequently. Besides, existing convolution neural network (CNN) structures only pay attention to the information flow between layers, while it cannot fully utilize the spatial information inside the layers. To address those problems, we propose an attention-based spatial segmentation network for traffic scene understanding. We use the convolutional attention module to improve the network's understanding capacity of spatial location distribution. Spatial CNN (SCNN) obtains through the information flow within one single convolutional layer and improves the spatial relationship modeling ability of the network. The experimental results demonstrate that this method effectively improves the neural network's application ability of the spatial information, thereby improving the effect of traffic scene understanding. Furthermore, a pixel-level road segmentation dataset called NWPU Road Dataset is built to help improve the process of traffic scene understanding.

摘要

道路和车道线的位置信息对于自动驾驶和辅助驾驶至关重要。这两个元素的检测精度极大地影响了整个系统的可靠性和实用性。在实际应用中,交通场景可能非常复杂,这使得精确获取道路和车道线的位置变得特别具有挑战性。常用的基于深度学习的目标检测模型在车道线和道路检测任务上表现得相当好,但它们仍然经常出现误检和漏检。此外,现有的卷积神经网络(CNN)结构只关注层之间的信息流,而不能充分利用层内的空间信息。为了解决这些问题,我们提出了一种基于注意力的空间分割网络来进行交通场景理解。我们使用卷积注意力模块来提高网络对空间位置分布的理解能力。空间卷积神经网络(SCNN)通过单个卷积层内的信息流获取信息,并提高网络的空间关系建模能力。实验结果表明,该方法有效地提高了神经网络对空间信息的应用能力,从而提高了交通场景理解的效果。此外,还构建了一个名为 NWPU Road Dataset 的像素级道路分割数据集,以帮助提高交通场景理解的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验