Suppr超能文献

基于多信息融合网络和基于 CNN 的区域生长的粗到细气道分割。

Coarse-to-fine airway segmentation using multi information fusion network and CNN-based region growing.

机构信息

School of Mechanical engineering and Automation, Fuzhou University, Fuzhou 350108, China.

School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.

出版信息

Comput Methods Programs Biomed. 2022 Mar;215:106610. doi: 10.1016/j.cmpb.2021.106610. Epub 2022 Jan 8.

Abstract

BACKGROUND AND OBJECTIVES

Automatic airway segmentation from chest computed tomography (CT) scans plays an important role in pulmonary disease diagnosis and computer-assisted therapy. However, low contrast at peripheral branches and complex tree-like structures remain as two mainly challenges for airway segmentation. Recent research has illustrated that deep learning methods perform well in segmentation tasks. Motivated by these works, a coarse-to-fine segmentation framework is proposed to obtain a complete airway tree.

METHODS

Our framework segments the overall airway and small branches via the multi-information fusion convolution neural network (Mif-CNN) and the CNN-based region growing, respectively. In Mif-CNN, atrous spatial pyramid pooling (ASPP) is integrated into a u-shaped network, and it can expend the receptive field and capture multi-scale information. Meanwhile, boundary and location information are incorporated into semantic information. These information are fused to help Mif-CNN utilize additional context knowledge and useful features. To improve the performance of the segmentation result, the CNN-based region growing method is designed to focus on obtaining small branches. A voxel classification network (VCN), which can entirely capture the rich information around each voxel, is applied to classify the voxels into airway and non-airway. In addition, a shape reconstruction method is used to refine the airway tree.

RESULTS

We evaluate our method on a private dataset and a public dataset from EXACT09. Compared with the segmentation results from other methods, our method demonstrated promising accuracy in complete airway tree segmentation. In the private dataset, the Dice similarity coefficient (DSC), Intersection over Union (IoU), false positive rate (FPR), and sensitivity are 93.5%, 87.8%, 0.015%, and 90.8%, respectively. In the public dataset, the DSC, IoU, FPR, and sensitivity are 95.8%, 91.9%, 0.053% and 96.6%, respectively.

CONCLUSION

The proposed Mif-CNN and CNN-based region growing method segment the airway tree accurately and efficiently in CT scans. Experimental results also demonstrate that the framework is ready for application in computer-aided diagnosis systems for lung disease and other related works.

摘要

背景与目的

从胸部 CT 扫描中自动分割气道在肺部疾病诊断和计算机辅助治疗中起着重要作用。然而,外周分支的低对比度和复杂的树状结构仍然是气道分割的两个主要挑战。最近的研究表明,深度学习方法在分割任务中表现出色。受这些工作的启发,提出了一种从粗到精的分割框架,以获得完整的气道树。

方法

我们的框架通过多信息融合卷积神经网络(Mif-CNN)和基于 CNN 的区域生长分别对整个气道和小分支进行分割。在 Mif-CNN 中,引入了空洞空间金字塔池化(ASPP)到 U 型网络中,可以扩展感受野并捕获多尺度信息。同时,将边界和位置信息合并到语义信息中。这些信息的融合有助于 Mif-CNN 利用额外的上下文知识和有用的特征。为了提高分割结果的性能,设计了基于 CNN 的区域生长方法来专注于获取小分支。应用全卷积网络(VCN)对每个体素进行分类,该网络可以完全捕获每个体素周围的丰富信息,将体素分类为气道和非气道。此外,采用形状重建方法对气道树进行细化。

结果

我们在一个私有数据集和一个来自 EXACT09 的公共数据集上评估了我们的方法。与其他方法的分割结果相比,我们的方法在完整气道树分割方面表现出了有前途的准确性。在私有数据集中,Dice 相似系数(DSC)、交并比(IoU)、假阳性率(FPR)和灵敏度分别为 93.5%、87.8%、0.015%和 90.8%。在公共数据集上,DSC、IoU、FPR 和灵敏度分别为 95.8%、91.9%、0.053%和 96.6%。

结论

提出的 Mif-CNN 和基于 CNN 的区域生长方法可以在 CT 扫描中准确高效地分割气道树。实验结果还表明,该框架已准备好应用于肺部疾病等计算机辅助诊断系统和其他相关工作中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验