Suppr超能文献

IDentif.AI:通过数字药物研发快速优化针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的联合疗法设计。

IDentif.AI: Rapidly optimizing combination therapy design against severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) with digital drug development.

作者信息

Blasiak Agata, Lim Jhin Jieh, Seah Shirley Gek Kheng, Kee Theodore, Remus Alexandria, Chye De Hoe, Wong Pui San, Hooi Lissa, Truong Anh T L, Le Nguyen, Chan Conrad E Z, Desai Rishi, Ding Xianting, Hanson Brendon J, Chow Edward Kai-Hua, Ho Dean

机构信息

The N.1 Institute for Health (N.1) National University of Singapore Singapore Singapore.

The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore.

出版信息

Bioeng Transl Med. 2020 Dec 1;6(1):e10196. doi: 10.1002/btm2.10196. eCollection 2021 Jan.

Abstract

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to multiple drug repurposing clinical trials that have yielded largely uncertain outcomes. To overcome this challenge, we used IDentif.AI, a platform that pairs experimental validation with artificial intelligence (AI) and digital drug development to rapidly pinpoint unpredictable drug interactions and optimize infectious disease combination therapy design with clinically relevant dosages. IDentif.AI was paired with a 12-drug candidate therapy set representing over 530,000 drug combinations against the SARS-CoV-2 live virus collected from a patient sample. IDentif.AI pinpointed the optimal combination as remdesivir, ritonavir, and lopinavir, which was experimentally validated to mediate a 6.5-fold enhanced efficacy over remdesivir alone. Additionally, it showed hydroxychloroquine and azithromycin to be relatively ineffective. The study was completed within 2 weeks, with a three-order of magnitude reduction in the number of tests needed. IDentif.AI independently mirrored clinical trial outcomes to date without any data from these trials. The robustness of this digital drug development approach paired with in vitro experimentation and AI-driven optimization suggests that IDentif.AI may be clinically actionable toward current and future outbreaks.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的出现引发了多项药物重新利用的临床试验,但结果大多不确定。为了克服这一挑战,我们使用了IDentif.AI平台,该平台将实验验证与人工智能(AI)以及数字药物开发相结合,以快速确定不可预测的药物相互作用,并以临床相关剂量优化传染病联合治疗方案的设计。IDentif.AI与一组包含12种药物的候选治疗方案配对,这些方案代表了从患者样本中收集的针对SARS-CoV-2活病毒的超过530,000种药物组合。IDentif.AI确定最佳组合为瑞德西韦、利托那韦和洛匹那韦,实验验证表明该组合比单独使用瑞德西韦的疗效提高了6.5倍。此外,研究表明羟氯喹和阿奇霉素相对无效。该研究在2周内完成,所需测试数量减少了三个数量级。IDentif.AI在没有任何来自这些试验的数据的情况下,独立反映了迄今为止的临床试验结果。这种将数字药物开发方法与体外实验和人工智能驱动的优化相结合的稳健性表明,IDentif.AI可能对当前和未来的疫情具有临床可操作性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ae4/7823122/5bbd9f44a725/BTM2-6-e10196-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验