Ruocco N A, Most A S, Sasken H, Steiner M, Gewirtz H
Division of Cardiology, Rhode Island Hospital, Providence 02903.
Proc Soc Exp Biol Med. 1988 Apr;187(4):416-24. doi: 10.3181/00379727-187-42682.
This study tested the hypothesis that 5-HT may impair coronary flow regulation by inappropriately increasing arteriolar tone in the coronary circulation. Ten closed chest, domestic swine were studied both in the presence and in the absence of a severe artificial intraluminal coronary stenosis. A 5-French micromanometer catheter with fluid lumen was placed in the left anterior descending coronary artery and used to record pressure and infuse 5-HT (40 and 100 micrograms/min) into the coronary circulation. For the stenosis phase of the protocol the catheter was embedded in the artificial stenosis. Hemodynamics, regional myocardial blood flow (microsphere technique), coronary vascular resistance, lactate consumption, and oxygen metabolism were measured at control and at 5 min of each 5-HT dose. In the absence of coronary artery stenosis (i.e., full vasodilatory reserve), there was no change in regional myocardial blood flow or coronary vascular resistance during 5-HT infusion. In the presence of a severe coronary stenosis (i.e., limited vasodilator reserve) 5-HT produced a significant (P less than 0.05) decrease versus control in the distal left anterior descending: circumflex zone endocardial blood flow ratio (0.63 +/- 0.19, mean +/- 1 SD, to 0.55 +/- 0.15) and a significant (P less than 0.05) increase versus control in endocardial (50.6 +/- 16.6 to 61.2 +/- 19.8 mm Hg/ml/min/g) and transmural (49.9 +/- 9.5 to 57.2 +/- 12.8) coronary vascular resistance. Thus, 5-HT does not impair coronary flow regulation when full vasodilatory reserve is present. When coronary vasodilatory reserve is impaired by the presence of a severe proximal stenosis, 5-HT causes modest impairment of endocardial flow regulation.