Suppr超能文献

基于微观尺度内聚力-摩擦力的钩端钢纤维增强混凝土裂缝开展机理有限元模型

Microscale Cohesive-Friction-Based Finite Element Model for the Crack Opening Mechanism of Hooked-End Steel Fiber-Reinforced Concrete.

作者信息

Abbas Yassir M

机构信息

Civil Engineering Department, King Saud University, Riyadh, P. O. Box 800, Riyadh 11421, Saudi Arabia.

出版信息

Materials (Basel). 2021 Feb 1;14(3):669. doi: 10.3390/ma14030669.

Abstract

The entire mechanical properties of steel fiber-reinforced concrete (SFRC) are significantly dependent on the fiber-matrix interactions. In the current study, a finite element (FE) model was developed to simulate the pullout response of hooked-end SFRC employing cohesive-frictional interactions. Plain stress elements were adapted in the model to exemplify the fiber process constituents, taking into consideration the material nonlinearity of the hooked-end fiber. Additionally, a surface-to-surface contact model was used to simulate the fiber's behavior in the pullout mechanism. The model was calibrated against experimental observations, and a modification factor model was proposed to account for the 3D phenomenalistic behavior of the pullout behavior. Realistic predictions were obtained by using this factor to predict the entire pullout-slip curves and independent results for the peak pullout load. The numerical results indicated that the increased fiber diameter would alter the mode of crack opening from fiber-matrix damage to that combined with matrix spalling, which can neutralize the sensitivity of the entire pullout response of hooked-end steel fiber to embedment depth. Additionally, the fiber-matrix bond was enhanced by increasing the fiber's surface area, sensibly leading to a higher pullout peak load and toughness. The developed FE model was also proficient in predicting microstructural stress distribution and deformations during the crack opening of SFRC. This model could be extended to fully model a loaded SFRC composite material by the inclusion of various randomly oriented dosages of fibers in the concrete block.

摘要

钢纤维增强混凝土(SFRC)的整体力学性能在很大程度上取决于纤维与基体之间的相互作用。在本研究中,开发了一种有限元(FE)模型,以采用内聚摩擦相互作用来模拟带钩端SFRC的拔出响应。模型中采用平面应力单元来模拟纤维的作用过程,同时考虑了带钩端纤维的材料非线性。此外,使用面面接触模型来模拟纤维在拔出过程中的行为。该模型通过与实验观测结果进行校准,并提出了一个修正因子模型来考虑拔出行为的三维现象学行为。通过使用该因子来预测整个拔出-滑移曲线和拔出峰值荷载的独立结果,得到了符合实际的预测。数值结果表明,纤维直径的增加会改变裂缝张开模式,从纤维-基体损伤转变为与基体剥落相结合的模式,这可以抵消带钩端钢纤维整个拔出响应对埋深的敏感性。此外,通过增加纤维的表面积增强了纤维-基体粘结,合理地导致了更高的拔出峰值荷载和韧性。所开发的有限元模型还能够预测SFRC裂缝张开过程中的微观结构应力分布和变形。通过在混凝土块中包含各种随机取向的纤维用量,该模型可以扩展为对加载的SFRC复合材料进行全面建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/996c/7867086/468a94969ba1/materials-14-00669-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验