Suppr超能文献

通过其对死亡率和残疾率的影响来估计隐性发病率。

Estimating hidden morbidity via its effect on mortality and disability.

作者信息

Woodbury M A, Manton K G, Yashin A I

机构信息

Department of Community and Family Medicine, Duke University Medical Center, Durham, NC 27706.

出版信息

Stat Med. 1988 Jan-Feb;7(1-2):325-36. doi: 10.1002/sim.4780070133.

Abstract

The applicability of the theory of partially observed finite-state Markov processes to the study of disease, morbidity, and disability is explored. A method is developed for the continuous updating of parameter estimates over time in longitudinal studies analogous to Kalman filtering in continuous valued continuous time stochastic processes. It builds on a model of filtering of incompletely observed finite-state Markov processes subject to mortality due to Yashin et al. The method of estimation is based on maximum likelihood theory and the incompleteness in the observation of the process is dealt with by applying missing information principles in maximum likelihood estimation.

摘要

探讨了部分观测有限状态马尔可夫过程理论在疾病、发病率和残疾研究中的适用性。开发了一种方法,用于在纵向研究中随时间连续更新参数估计,类似于连续值连续时间随机过程中的卡尔曼滤波。它建立在亚申等人提出的受死亡率影响的不完全观测有限状态马尔可夫过程滤波模型之上。估计方法基于最大似然理论,通过在最大似然估计中应用缺失信息原理来处理过程观测中的不完整性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验