Suppr超能文献

比较源自哨兵1号和2号的合成孔径雷达(SAR)及多光谱数据的欧洲主要作物的地表物候。

Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2.

作者信息

Meroni Michele, d'Andrimont Raphaël, Vrieling Anton, Fasbender Dominique, Lemoine Guido, Rembold Felix, Seguini Lorenzo, Verhegghen Astrid

机构信息

European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, I-21027 Ispra, VA, Italy.

University of Twente, Faculty of Geo-information Science and Earth Observation, P.O. Box 217, 7500, AE, Enschede, the Netherlands.

出版信息

Remote Sens Environ. 2021 Feb;253:112232. doi: 10.1016/j.rse.2020.112232.

Abstract

The frequent acquisitions of fine spatial resolution imagery (10 m) offered by recent multispectral satellite missions, including Sentinel-2, can resolve single agricultural fields and thus provide crop-specific phenology metrics, a crucial information for crop monitoring. However, effective phenology retrieval may still be hampered by significant cloud cover. Synthetic aperture radar (SAR) observations are not restricted by weather conditions, and Sentinel-1 thus ensures more frequent observations of the land surface. However, these data have not been systematically exploited for phenology retrieval so far. In this study, we extracted crop-specific land surface phenology (LSP) from Sentinel-1 and Sentinel-2 of major European crops (common and durum wheat, barley, maize, oats, rape and turnip rape, sugar beet, sunflower, and dry pulses) using ground-truth information from the "Copernicus module" of the Land Use/Cover Area frame statistical Survey (LUCAS) of 2018. We consistently used a single model-fit approach to retrieve LSP metrics on temporal profiles of CR (Cross Ratio, the ratio of the backscattering coefficient VH/VV from Sentinel-1) and NDVI (Normalized Difference Vegetation Index from Sentinel-2). Our analysis revealed that LSP retrievals from Sentinel-1 are comparable to those of Sentinel-2, particularly for winter crops. The start of season (SOS) timings, as derived from Sentinel-1 and -2, are significantly correlated (average r of 0.78 for winter and 0.46 for summer crops). The correlation is lower for end of season retrievals (EOS, r of 0.62 and 0.34). Agreement between LSP derived from Sentinel-1 and -2 varies among crop types, ranging from  = 0.89 and mean absolute error MAE = 10 days (SOS of dry pulses) to  = 0.15 and MAE = 53 days (EOS of sugar beet). Observed deviations revealed that Sentinel-1 and -2 LSP retrievals can be complementary; for example for winter crops we found that SAR detected the start of the spring growth while multispectral data is sensitive to the vegetative growth before and during winter. To test if our results correspond reasonably to in-situ data, we compared average crop-specific LSP for Germany to average phenology from ground phenological observations of 2018 gathered from the German Meteorological Service (DWD). Our study demonstrated that both Sentinel-1 and -2 can provide relevant and at times complementary LSP information at field- and crop-level.

摘要

近期包括哨兵 - 2 在内的多光谱卫星任务提供了频繁的高空间分辨率影像(10 米),能够分辨单个农田,从而提供特定作物的物候指标,这是作物监测的关键信息。然而,有效的物候反演仍可能受到大量云层覆盖的阻碍。合成孔径雷达(SAR)观测不受天气条件限制,因此哨兵 - 1 能确保更频繁地观测陆地表面。然而,到目前为止这些数据尚未被系统地用于物候反演。在本研究中,我们利用 2018 年土地利用/覆盖面积框架统计调查(LUCAS)的“哥白尼模块”的地面真值信息,从哨兵 - 1 和哨兵 - 2 中提取了欧洲主要作物(普通小麦和硬粒小麦、大麦、玉米、燕麦、油菜和芜菁油菜、甜菜、向日葵以及干豆类)的特定作物陆地表面物候(LSP)。我们始终采用单一模型拟合方法,根据 CR(交叉比,哨兵 - 1 的后向散射系数 VH/VV 的比值)和 NDVI(哨兵 - 2 的归一化植被指数)的时间剖面反演 LSP 指标。我们的分析表明,从哨兵 - 1 反演的 LSP 与哨兵 - 2 的相当,特别是对于冬季作物。从哨兵 - 1 和 - 2 得出的季节开始(SOS)时间显著相关(冬季平均 r 为 0.78,夏季作物为 0.46)。季节结束反演(EOS)的相关性较低(r 分别为 0.62 和 0.34)。从哨兵 - 1 和 - 2 得出的 LSP 之间的一致性因作物类型而异,范围从 = 0.89 和平均绝对误差 MAE = 10 天(干豆类的 SOS)到 = 0.15 和 MAE = 53 天(甜菜的 EOS)。观测到的偏差表明,哨兵 - 1 和 - 2 的 LSP 反演可以互补;例如,对于冬季作物,我们发现 SAR 检测到春季生长的开始,而多光谱数据对冬季之前和期间的营养生长敏感。为了检验我们的结果是否与原位数据合理对应,我们将德国特定作物的平均 LSP 与德国气象局(DWD)收集的 2018 年地面物候观测的平均物候进行了比较。我们的研究表明,哨兵 - 1 和 - 2 都可以在田间和作物层面提供相关且有时互补的 LSP 信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f63c/7841528/e86815c41f8b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验