Suppr超能文献

链接脊髓损伤模型系统中心和当地创伤登记处的个体数据:概率匹配算法的开发和验证。

Linking Individual Data From the Spinal Cord Injury Model Systems Center and Local Trauma Registry: Development and Validation of Probabilistic Matching Algorithm.

机构信息

Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama.

Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Top Spinal Cord Inj Rehabil. 2020;26(4):221-231. doi: 10.46292/sci20-00015. Epub 2021 Jan 20.

Abstract

BACKGROUND

Linking records from the National Spinal Cord Injury Model Systems (SCIMS) database to the National Trauma Data Bank (NTDB) provides a unique opportunity to study early variables in predicting long-term outcomes after traumatic spinal cord injury (SCI). The public use data sets of SCIMS and NTDB are stripped of protected health information, including dates and zip code.

OBJECTIVES

To develop and validate a probabilistic algorithm linking data from an SCIMS center and its affiliated trauma registry.

METHOD

Data on SCI admissions 2011-2018 were retrieved from an SCIMS center ( = 302) and trauma registry ( = 723), of which 202 records had the same medical record number. The SCIMS records were divided equally into two data sets for algorithm development and validation, respectively. We used a two-step approach: blocking and weight generation for linking variables (race, insurance, height, and weight).

RESULTS

In the development set, 257 SCIMS-trauma pairs shared the same sex, age, and injury year across 129 clusters, of which 91 records were true-match. The probabilistic algorithm identified 65 of the 91 true-match records (sensitivity, 71.4%) with a positive predictive value (PPV) of 80.2%. The algorithm was validated over 282 SCIMS-trauma pairs across 127 clusters and had a sensitivity of 73.7% and PPV of 81.1%. Post hoc analysis shows the addition of injury date and zip code improved the specificity from 57.9% to 94.7%.

CONCLUSION

We demonstrate the feasibility of probabilistic linkage between SCIMS and trauma records, which needs further refinement and validation. Gaining access to injury date and zip code would improve record linkage significantly.

摘要

背景

将国家脊髓损伤模型系统 (SCIMS) 数据库中的记录与国家创伤数据库 (NTDB) 相关联,为研究创伤性脊髓损伤 (SCI) 后长期预后的早期预测变量提供了独特的机会。SCIMS 和 NTDB 的公共使用数据集已去除了包括日期和邮政编码在内的受保护健康信息。

目的

开发和验证一种将 SCIMS 中心及其附属创伤登记处的数据进行链接的概率算法。

方法

从一个 SCIMS 中心 (n = 302) 和创伤登记处 (n = 723) 检索了 2011 年至 2018 年 SCI 入院的数据,其中 202 份记录具有相同的病历号。将 SCIMS 记录平均分为两个数据集,分别用于算法开发和验证。我们使用两步法:对种族、保险、身高和体重等变量进行分组和权重生成以进行链接。

结果

在开发集,129 个聚类中有 257 个 SCIMS-创伤对具有相同的性别、年龄和损伤年份,其中 91 个记录为真实匹配。概率算法识别出 91 个真实匹配记录中的 65 个 (敏感性,71.4%),阳性预测值 (PPV) 为 80.2%。该算法在 282 个 SCIMS-创伤对和 127 个聚类中进行了验证,敏感性为 73.7%,PPV 为 81.1%。事后分析表明,添加受伤日期和邮政编码可将特异性从 57.9%提高到 94.7%。

结论

我们证明了 SCIMS 和创伤记录之间的概率链接是可行的,需要进一步的改进和验证。获取受伤日期和邮政编码可显著提高记录链接的准确性。

相似文献

8
Perceptions of Person-Centered Care Following Spinal Cord Injury.脊髓损伤后对以患者为中心的护理的认知
Arch Phys Med Rehabil. 2016 Aug;97(8):1338-44. doi: 10.1016/j.apmr.2016.03.016. Epub 2016 Apr 21.

本文引用的文献

8
Probabilistic record linkage.概率性记录链接
Int J Epidemiol. 2016 Jun;45(3):954-64. doi: 10.1093/ije/dyv322. Epub 2015 Dec 20.
9
Early Predictors of Functional Outcome After Trauma.创伤后功能结局的早期预测指标
PM R. 2016 Apr;8(4):314-320. doi: 10.1016/j.pmrj.2015.08.007. Epub 2015 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验