Suppr超能文献

运用分子对接技术研究烯醇化酶以阐明抗肺炎链球菌感染的潜在药物靶标。

Molecular docking of alpha-enolase to elucidate the promising candidates against Streptococcus pneumoniae infection.

机构信息

Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Jalan Sultan Mahmud, 20400, Kuala Terengganu, Terengganu Darul Iman, Malaysia.

Research Centre for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan.

出版信息

Daru. 2021 Jun;29(1):73-84. doi: 10.1007/s40199-020-00384-3. Epub 2021 Feb 3.

Abstract

PURPOSE

To predict potential inhibitors of alpha-enolase to reduce plasminogen binding of Streptococcus pneumoniae (S. pneumoniae) that may lead as an orally active drug. S. pneumoniae remains dominant in causing invasive diseases. Fibrinolytic pathway is a critical factor of S. pneumoniae to invade and progression of disease in the host body. Besides the low mass on the cell surface, alpha-enolase possesses significant plasminogen binding among all exposed proteins.

METHODS

In-silico based drug designing approach was implemented for evaluating potential inhibitors against alpha-enolase based on their binding affinities, energy score and pharmacokinetics. Lipinski's rule of five (LRo5) and Egan's (Brain Or IntestinaL EstimateD) BOILED-Egg methods were executed to predict the best ligand for biological systems.

RESULTS

Molecular docking analysis revealed, Sodium (1,5-dihydroxy-2-oxopyrrolidin-3-yl)-hydroxy-dioxidophosphanium (SF-2312) as a promising inhibitor that fabricates finest attractive charges and conventional hydrogen bonds with S. pneumoniae alpha-enolase. Moreover, the pharmacokinetics of SF-2312 predict it as a therapeutic inhibitor for clinical trials. Like SF-2312, phosphono-acetohydroxamate (PhAH) also constructed adequate interactions at the active site of alpha-enolase, but it predicted less favourable than SF-2312 based on binding affinity.

CONCLUSION

Briefly, SF-2312 and PhAH ligands could inhibit the role of alpha-enolase to restrain plasminogen binding, invasion and progression of S. pneumoniae. As per our investigation and analysis, SF-2312 is the most potent naturally existing inhibitor of S. pneumoniae alpha-enolase in current time.

摘要

目的

预测 alpha-烯醇酶的潜在抑制剂,以减少肺炎链球菌(S. pneumoniae)对纤溶酶原的结合,从而可能开发出一种具有口服活性的药物。肺炎链球菌仍然是导致侵袭性疾病的主要病原体。纤溶途径是肺炎链球菌在宿主体内入侵和疾病进展的关键因素。除了细胞表面的低质量外,alpha-烯醇酶在所有暴露的蛋白质中具有显著的纤溶酶原结合能力。

方法

采用基于计算机的药物设计方法,根据结合亲和力、能量评分和药代动力学评价针对 alpha-烯醇酶的潜在抑制剂。执行 Lipinski 的五规则(LRo5)和 Egan 的(脑或肠估计)BOILED-Egg 方法,以预测生物系统的最佳配体。

结果

分子对接分析表明,Sodium (1,5-dihydroxy-2-oxopyrrolidin-3-yl)-hydroxy-dioxidophosphanium(SF-2312)是一种有前途的抑制剂,它与肺炎链球菌 alpha-烯醇酶形成了最好的吸引力电荷和传统氢键。此外,SF-2312 的药代动力学预测它可作为临床试验的治疗抑制剂。与 SF-2312 类似,膦酸基乙酰胺(PhAH)也在 alpha-烯醇酶的活性部位形成了足够的相互作用,但根据结合亲和力,它的预测结果不如 SF-2312 有利。

结论

总之,SF-2312 和 PhAH 配体可以抑制 alpha-烯醇酶的作用,从而阻止纤溶酶原与肺炎链球菌的结合、入侵和进展。根据我们的研究和分析,SF-2312 是目前肺炎链球菌 alpha-烯醇酶最有效的天然抑制剂。

相似文献

3
SF2312 is a natural phosphonate inhibitor of enolase.SF2312是烯醇化酶的一种天然膦酸酯抑制剂。
Nat Chem Biol. 2016 Dec;12(12):1053-1058. doi: 10.1038/nchembio.2195. Epub 2016 Oct 10.

引用本文的文献

4
Beyond , emerging roles and targeting strategies of other enolases in cancers.此外,其他烯醇化酶在癌症中的新作用和靶向策略。
Mol Ther Oncolytics. 2023 Nov 10;31:100750. doi: 10.1016/j.omto.2023.100750. eCollection 2023 Dec 19.

本文引用的文献

3
The PSIPRED Protein Analysis Workbench: 20 years on.PSIPRED 蛋白质分析工作平台:20 年的发展
Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407. doi: 10.1093/nar/gkz297.
6
Progress in the biological function of alpha-enolase.α-烯醇化酶生物学功能的研究进展
Anim Nutr. 2016 Mar;2(1):12-17. doi: 10.1016/j.aninu.2016.02.005. Epub 2016 Mar 2.
7
Streptococcus pneumoniae: transmission, colonization and invasion.肺炎链球菌:传播、定植与侵袭。
Nat Rev Microbiol. 2018 Jun;16(6):355-367. doi: 10.1038/s41579-018-0001-8.
9
SF2312 is a natural phosphonate inhibitor of enolase.SF2312是烯醇化酶的一种天然膦酸酯抑制剂。
Nat Chem Biol. 2016 Dec;12(12):1053-1058. doi: 10.1038/nchembio.2195. Epub 2016 Oct 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验