文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过超分子金纳米棒介导的第二近红外窗口光热 PD-L1 基因编辑重编程肿瘤微环境用于增强癌症免疫治疗。

Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy.

机构信息

Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

出版信息

Adv Mater. 2021 Mar;33(12):e2006003. doi: 10.1002/adma.202006003. Epub 2021 Feb 4.


DOI:10.1002/adma.202006003
PMID:33538047
Abstract

A photothermal genome-editing strategy is described to improve immune checkpoint blockade (ICB) therapy by CRISPR/Cas9-mediated disruption of PD-L1 and mild-hyperthermia-induced activation of immunogenic cell death (ICD). This strategy relies on a supramolecular cationic gold nanorod that not only serves as a carrier to deliver CRISPR/Cas9 targeting PD-L1, but also harvests the second near-infrared-window (NIR-II) light and converts into mild hyperthermia to induce both ICD and gene expression of Cas9. The genomic disruption of PD-L1 significantly augments ICB therapy by improving the conversion of dendritic cells to T cells, followed by promoting the infiltration of cytotoxic T lymphocytes into tumors, thereby reprogramming immunosuppressive tumor microenvironment into immunoactive one. Such a therapeutic modality greatly inhibits the activity of primary and metastatic tumors and exhibits long-term immune memory effects against both rechallenged and recurrent tumors. The current therapeutic strategy for synergistic PD-L1 disruption and ICD activation represents an appealing way for cancer immunotherapy.

摘要

一种光热基因编辑策略被描述为通过 CRISPR/Cas9 介导的 PD-L1 破坏和温和热疗诱导的免疫原性细胞死亡 (ICD) 激活来改善免疫检查点阻断 (ICB) 治疗。该策略依赖于一种超分子阳离子金纳米棒,它不仅用作递送 CRISPR/Cas9 靶向 PD-L1 的载体,还可以收集第二个近红外窗口 (NIR-II) 光并将其转化为温和的热疗,从而诱导 ICD 和 Cas9 的基因表达。PD-L1 的基因组破坏通过改善树突状细胞向 T 细胞的转化,随后促进细胞毒性 T 淋巴细胞浸润肿瘤,从而将免疫抑制性肿瘤微环境重新编程为免疫活性微环境,从而显著增强 ICB 治疗。这种治疗方式极大地抑制了原发性和转移性肿瘤的活性,并对再次挑战和复发的肿瘤产生长期的免疫记忆效应。协同 PD-L1 破坏和 ICD 激活的当前治疗策略代表了癌症免疫治疗的一种有吸引力的方法。

相似文献

[1]
Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy.

Adv Mater. 2021-3

[2]
Peptide vaccine-conjugated mesoporous carriers synergize with immunogenic cell death and PD-L1 blockade for amplified immunotherapy of metastatic spinal.

J Nanobiotechnology. 2021-8-12

[3]
Second near-infrared photothermal-amplified immunotherapy using photoactivatable composite nanostimulators.

J Nanobiotechnology. 2021-12-20

[4]
Gold Nano Frameworks with Mesopores for Synergistic Immune-Thermal Therapy in Hepatic Carcinoma: A Paradigm Shift in Immune Checkpoint Blockade.

ACS Appl Mater Interfaces. 2024-9-4

[5]
Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.

Acta Biomater. 2023-2

[6]
Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.

Theranostics. 2020

[7]
Targeted delivery of anti-miRNA21 sensitizes PD-L1 tumor to immunotherapy by promoting immunogenic cell death.

Theranostics. 2024

[8]
HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy.

ACS Nano. 2022-9-27

[9]
Combined Effects of Anti-PD-L1 and Nanosonodynamic Therapy on HCC Immune Activation in Mice: An Investigation.

Int J Nanomedicine. 2024

[10]
Activation of the cGAS-STING pathway combined with CRISPR-Cas9 gene editing triggering long-term immunotherapy.

Biomaterials. 2022-12

引用本文的文献

[1]
Nanotechnology-Based Delivery of CRISPR/Cas9 for Cancer Treatment: A Comprehensive Review.

Cells. 2025-7-23

[2]
NIR-II light-driven nanovaccine for cancer immunotherapy via lymph node migration-mediated accumulation.

Theranostics. 2025-7-2

[3]
Targeting TNFAIP2 with NIR-II CRISPR-Cas9 nanosystem to overcome cisplatin resistance in laryngeal cancer.

NPJ Precis Oncol. 2025-7-29

[4]
Advancements in CRISPR/Cas systems for disease treatment.

Acta Pharm Sin B. 2025-6

[5]
Nanomedicine-driven tumor glucose metabolic reprogramming for enhanced cancer immunotherapy.

Acta Pharm Sin B. 2025-6

[6]
An Anisotropic Gold-Palladium Heterostructured Nanosystem for Synergistically Overcoming Radioresistance and Enhancing Melanoma Radioimmunotherapy.

Adv Sci (Weinh). 2025-8

[7]
Bioactive metallic nanoparticles for synergistic cancer immunotherapy.

Acta Pharm Sin B. 2025-4

[8]
Orchestrated Cu-coordinated tetracycline-porphyrin self-assembly remodels tumor microenvironment for photo-enhanced immuno-chemodynamic therapy.

J Nanobiotechnology. 2025-6-5

[9]
Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems.

J Nanobiotechnology. 2025-5-20

[10]
Precisely Targeted Nanoparticles for CRISPR-Cas9 Delivery in Clinical Applications.

Nanomaterials (Basel). 2025-4-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索