Suppr超能文献

利用双串联 softmax CNN 提高基于多主体运动想象的脑机接口性能。

Improving the performance of multisubject motor imagery-based BCIs using twin cascaded softmax CNNs.

机构信息

Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, People's Republic of China.

State Key Laboratory for Manufacturing Systems Engineering, Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

出版信息

J Neural Eng. 2021 Mar 17;18(3). doi: 10.1088/1741-2552/abe357.

Abstract

Motor imagery (MI) EEG signals vary greatly among subjects, so scholarly research on motor imagery-based brain-computer interfaces (BCIs) has mainly focused on single-subject systems or subject-dependent systems. However, the single-subject model is applicable only to the target subject, and the small sample number greatly limits the performance of the model. This paper aims to study a convolutional neural network to achieve an adaptable MI-BCI that is applicable to multiple subjects.In this paper, a twin cascaded softmax convolutional neural network (TCSCNN) is proposed for multisubject MI-BCIs. The proposed TCSCNN is independent and can be applied to any single-subject MI classification convolutional neural network (CNN) model. First, to reduce the influence of individual differences, subject recognition and MI recognition are accomplished simultaneously. A cascaded softmax structure consisting of two softmax layers, related to subject recognition and MI recognition, is subsequently applied. Second, to improve the MI classification precision, a twin network structure is proposed on the basis of ensemble learning. TCSCNN is built by combining a cascaded softmax structure and twin network structure.Experiments were conducted on three popular CNN models (EEGNet and Shallow ConvNet and Deep ConvNet from EEGDecoding) and three public datasets (BCI Competition IV datasets 2a and 2b and the high-gamma dataset) to verify the performance of the proposed TCSCNN. The results show that compared with the state-of-the-art CNN model, the proposed TCSCNN obviously improves the precision and convergence of multisubject MI recognition.This study provides a promising scheme for multisubject MI-BCI, reflecting the progress made in the development and application of MI-BCIs.

摘要

运动想象 (MI) EEG 信号在不同个体之间存在很大差异,因此基于运动想象的脑机接口 (BCI) 的学术研究主要集中在单个体系统或个体依赖的系统上。然而,单个体模型仅适用于目标个体,并且小样本数量极大地限制了模型的性能。本文旨在研究卷积神经网络,以实现适用于多个个体的自适应 MI-BCI。

在本文中,提出了一种用于多主体 MI-BCI 的孪生级联 softmax 卷积神经网络 (TCSCNN)。所提出的 TCSCNN 是独立的,可以应用于任何单个主体 MI 分类卷积神经网络 (CNN) 模型。首先,为了减少个体差异的影响,同时完成主体识别和 MI 识别。随后应用了由两个与主体识别和 MI 识别相关的 softmax 层组成的级联 softmax 结构。其次,为了提高 MI 分类精度,在集成学习的基础上提出了孪生网络结构。TCSCNN 通过级联 softmax 结构和孪生网络结构的组合构建。

在三个流行的 CNN 模型 (EEGNet、Shallow ConvNet 和 Deep ConvNet 来自 EEGDecoding) 和三个公共数据集 (BCI 竞赛 IV 数据集 2a 和 2b 和高伽马数据集) 上进行了实验,以验证所提出的 TCSCNN 的性能。结果表明,与最先进的 CNN 模型相比,所提出的 TCSCNN 明显提高了多主体 MI 识别的精度和收敛性。

本研究为多主体 MI-BCI 提供了一个有前途的方案,反映了 MI-BCI 的开发和应用的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验