Suppr超能文献

开发和验证一种预测肝移植后长期生存的模型。

Development and Validation of a Model to Predict Long-Term Survival After Liver Transplantation.

机构信息

Division of Digestive Health and Liver Diseases, Department of MedicineUniversity of Miami Miller School of MedicineMiamiFL.

Department of Public Health SciencesUniversity of Miami Miller School of MedicineMiamiFL.

出版信息

Liver Transpl. 2021 Jun;27(6):797-807. doi: 10.1002/lt.26002.

Abstract

Patients are prioritized for liver transplantation (LT) under an "urgency-based" system using the Model for End-Stage Liver Disease score. This system focuses solely on waitlist mortality, without considerations of posttransplant morbidity, mortality, and health care use. We sought to develop and internally validate a continuous posttransplant risk score during 5-year and 10-year time horizons. This retrospective cohort study used national registry data of adult deceased donor LT (DDLT) recipients with ≥90 days of pretransplant waiting time from February 27, 2002 to December 31, 2018. We fit Cox regression models at 5 and 10 years to estimate beta coefficients for a risk score using manual variable selection and calculated the absolute predicted survival time. Among 21,103 adult DDLT recipients, 11 variables were selected for the final model. The area under the curves at 5 and 10 years were 0.63 (95% confidence interval [CI], 0.60-0.66) and 0.67 (95% CI, 0.64-0.70), respectively. The group with the highest ("best") scores had 5-year and 10-year survivals of 89.4% and 85.4%, respectively, compared with 45.9% and 22.2% for those with the lowest ("worst") scores. Our score was significantly better at predicting long-term survival compared with the existing scores. We developed and validated a risk score using nearly 17 years of data to prioritize patients with end-stage liver disease based on projected posttransplant survival. This score can serve as the building block by which the transplant field can change the entire approach to prioritizing patients to an approach that is based on considerations of maximizing benefits (ie, survival benefit-based allocation) rather than simply waitlist mortality.

摘要

患者根据终末期肝病模型评分(Model for End-Stage Liver Disease score),按照“紧急程度”被优先安排进行肝移植(Liver Transplantation,LT)。该系统仅关注等待名单死亡率,而不考虑移植后的发病率、死亡率和医疗保健利用情况。我们旨在开发和内部验证一个在 5 年和 10 年时间范围内的连续移植后风险评分。本回顾性队列研究使用了全国器官捐献肝移植(Deceased Donor Liver Transplantation,DDLT)受者的登记数据,这些受者在 2002 年 2 月 27 日至 2018 年 12 月 31 日期间的移植前等待时间≥90 天。我们使用手动变量选择在 5 年和 10 年时拟合 Cox 回归模型,以估算风险评分的β系数,并计算绝对预测生存时间。在 21,103 名成年 DDLT 受者中,最终模型选择了 11 个变量。5 年和 10 年的曲线下面积分别为 0.63(95%置信区间[Confidence Interval,CI],0.60-0.66)和 0.67(95% CI,0.64-0.70)。“最佳”评分最高的组,5 年和 10 年的生存率分别为 89.4%和 85.4%,而“最差”评分最低的组则分别为 45.9%和 22.2%。与现有评分相比,我们的评分在预测长期生存率方面表现显著更好。我们使用近 17 年的数据开发并验证了一个风险评分,以根据预测的移植后生存率对终末期肝病患者进行优先级排序。该评分可以作为基础,使移植领域能够改变整个患者优先级排序方法,从基于等待名单死亡率的方法转变为基于最大化获益(即基于生存获益的分配)的方法,而不仅仅是简单地考虑等待名单死亡率。

相似文献

引用本文的文献

6
Accurate long-term prediction of death for patients with cirrhosis.肝硬化患者死亡的准确长期预测。
Hepatology. 2022 Sep;76(3):700-711. doi: 10.1002/hep.32457. Epub 2022 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验