24016Division of Transplant and Hepatobiliary SurgeryHenry Ford HospitalDetroitMichiganUSA.
Henry Ford Transplant InstituteDetroitMichiganUSA.
Liver Transpl. 2022 Jul;28(7):1133-1143. doi: 10.1002/lt.26442. Epub 2022 Apr 28.
Current liver transplantation (LT) organ allocation relies on Model for End-Stage Liver Disease-sodium scores to predict mortality in patients awaiting LT. This study aims to develop neural network (NN) models that more accurately predict LT waitlist mortality. The study evaluates patients listed for LT between February 27, 2002, and June 30, 2021, using the Organ Procurement and Transplantation Network/United Network for Organ Sharing registry. We excluded patients listed with Model for End-Stage Liver Disease (MELD) exception scores and those listed for multiorgan transplant, except for liver-kidney transplant. A subset of data from the waiting list was used to create a mortality prediction model at 90 days after listing with 105,140 patients. A total of 28 variables were selected for model creation. The data were split using random sampling into training, validation, and test data sets in a 60:20:20 ratio. The performance of the model was assessed using area under the receiver operating curve (AUC-ROC) and area under the precision-recall curve (AUC-PR). AUC-ROC for 90-day mortality was 0.936 (95% confidence interval [CI], 0.934-0.937), and AUC-PR was 0.758 (95% CI, 0.754-0.762). The NN 90-day mortality model outperformed MELD-based models for both AUC-ROC and AUC-PR. The 90-day mortality model specifically identified more waitlist deaths with a higher recall (sensitivity) of 0.807 (95% CI, 0.803-0.811) versus 0.413 (95% CI, 0.409-0.418; p < 0.001). The performance metrics were compared by breaking the test data set into multiple patient subsets by ethnicity, gender, region, age, diagnosis group, and year of listing. The NN 90-day mortality model outperformed MELD-based models across all subsets in predicting mortality. In conclusion, organ allocation based on NN modeling has the potential to decrease waitlist mortality and lead to more equitable allocation systems in LT.
目前,肝移植(LT)器官分配依赖于终末期肝病钠评分模型来预测等待 LT 的患者的死亡率。本研究旨在开发更准确预测 LT 候补名单死亡率的神经网络(NN)模型。该研究使用器官获取和移植网络/联合器官共享网络登记处评估了 2002 年 2 月 27 日至 2021 年 6 月 30 日期间列入 LT 名单的患者。我们排除了使用终末期肝病模型(MELD)例外评分列入名单的患者和多器官移植患者(除肝-肾移植外)。从候补名单中抽取一部分数据,使用 105140 名患者在列入名单后 90 天创建死亡率预测模型。总共选择了 28 个变量用于模型创建。使用随机抽样将数据分为训练、验证和测试数据集,比例为 60:20:20。使用接收者操作特征曲线下面积(AUC-ROC)和精度-召回曲线下面积(AUC-PR)评估模型性能。90 天死亡率的 AUC-ROC 为 0.936(95%置信区间[CI],0.934-0.937),AUC-PR 为 0.758(95%CI,0.754-0.762)。NN 90 天死亡率模型在 AUC-ROC 和 AUC-PR 方面均优于基于 MELD 的模型。90 天死亡率模型特别确定了更多的候补名单死亡人数,召回率(敏感性)更高,为 0.807(95%CI,0.803-0.811),而不是 0.413(95%CI,0.409-0.418;p<0.001)。通过将测试数据集按种族、性别、地区、年龄、诊断组和列入名单年份划分为多个患者子集,比较了性能指标。NN 90 天死亡率模型在预测死亡率方面优于基于 MELD 的所有模型子集。总之,基于 NN 建模的器官分配有可能降低候补名单死亡率,并导致 LT 中更公平的分配系统。