The Department of Electrical and Electronics Engineering, Kangwon National University, Chuncheon 24341, Korea.
The Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea.
Sensors (Basel). 2021 Feb 2;21(3):1001. doi: 10.3390/s21031001.
This study presents a system for assessing the freshness of meat with electrical impedance spectroscopy (EIS) in the frequency range of 125 Hz to 128 kHz combined with an image classifier for non-destructive and low-cost applications. The freshness standard is established by measuring the aerobic plate count (APC), 2-thiobarbituric acid reactive substances (TBARS), and composition analysis (crude fat, crude protein, and moisture) values of the microbiological detection to represent the correlation between EIS and meat freshness. The EIS and images of meat are combined to predict the freshness with the Adaboost classification and gradient boosting regression algorithms. As a result, when the elapsed time of beef storage for 48 h is classified into three classes, the time prediction accuracy is up to 85% compared to prediction accuracy of 56.7% when only images are used without EIS information. Significantly, the relative standard deviation (RSD) of APC and TBARS value predictions with EIS and images datum achieves 0.890 and 0.678, respectively.
本研究提出了一种利用 125 Hz 至 128 kHz 频率范围内的阻抗谱(EIS)结合图像分类器进行非破坏性和低成本应用的肉类新鲜度评估系统。通过测量微生物检测中的需氧平板计数(APC)、2-硫代巴比妥酸反应物质(TBARS)和成分分析(粗脂肪、粗蛋白和水分)值来建立新鲜度标准,以表示 EIS 与肉类新鲜度之间的相关性。将 EIS 和肉类图像结合起来,利用 Adaboost 分类和梯度提升回归算法来预测新鲜度。结果表明,当将牛肉储存 48 小时后的时间流逝分为三类时,与仅使用图像而不使用 EIS 信息时的预测准确性 56.7%相比,时间预测准确性高达 85%。值得注意的是,使用 EIS 和图像数据预测 APC 和 TBARS 值的相对标准偏差(RSD)分别达到 0.890 和 0.678。