Kuwahara Tomotaka, Saito Keiji
Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP), 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
Interdisciplinary Theoretical & Mathematical Sciences Program (iTHEMS) RIKEN 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
Phys Rev Lett. 2021 Jan 22;126(3):030604. doi: 10.1103/PhysRevLett.126.030604.
In this study, we investigate out-of-time-order correlators (OTOCs) in systems with power-law decaying interactions such as R^{-α}, where R is the distance. In such systems, the fast scrambling of quantum information or the exponential growth of information propagation can potentially occur according to the decay rate α. In this regard, a crucial open challenge is to identify the optimal condition for α such that fast scrambling cannot occur. In this study, we disprove fast scrambling in generic long-range interacting systems with α>D (D: spatial dimension), where the total energy is extensive in terms of system size and the thermodynamic limit is well defined. We rigorously demonstrate that the OTOC shows a polynomial growth over time as long as α>D and the necessary scrambling time over a distance R is larger than t≳R^{[(2α-2D)/(2α-D+1)]}.
在本研究中,我们研究了具有幂律衰减相互作用(如(R^{-\alpha}),其中(R)为距离)的系统中的非时序关联函数(OTOC)。在这类系统中,根据衰减率(\alpha),量子信息的快速混沌或信息传播的指数增长可能会发生。在这方面,一个关键的开放性挑战是确定(\alpha)的最优条件,使得快速混沌不会发生。在本研究中,我们证明了在(\alpha > D)((D):空间维度)的一般长程相互作用系统中不存在快速混沌,其中总能量在系统大小方面是广延的且热力学极限是明确的。我们严格证明,只要(\alpha > D),OTOC随时间呈多项式增长,并且在距离(R)上的必要混沌时间大于(t \gtrsim R^{[(2\alpha - 2D)/(2\alpha - D + 1)]})。