Tran Minh C, Guo Andrew Y, Deshpande Abhinav, Lucas Andrew, Gorshkov Alexey V
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.
Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.
Phys Rev X. 2021 Jul;11(3). doi: 10.1103/physrevx.11.031016.
We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-Horne-Zeilinger-like state and, consequently, transferring quantum information in large systems exhibiting power-law interactions. For all power-law exponents between and , where is the dimension of the system, the protocol yields a polynomial speed-up for and a superpolynomial speed-up for , compared to the state of the art. For all , the protocol saturates the Lieb-Robinson bounds (up to subpolynomial corrections), thereby establishing the optimality of the protocol and the tightness of the bounds in this regime. The protocol has a wide range of applications, including in quantum sensing, quantum computing, and preparation of topologically ordered states. In addition, the protocol provides a lower bound on the gate count in digital simulations of power-law interacting systems.
我们提出了一种最优协议,用于将未知量子比特状态编码为多量子比特类格林伯格 - 霍恩 - 泽林格态,从而在呈现幂律相互作用的大型系统中传输量子信息。对于介于(1)和系统维度(d)之间的所有幂律指数,与现有技术相比,该协议对于(d = 2)时产生多项式加速,对于(d > 2)时产生超多项式加速。对于所有(d),该协议饱和了李布 - 罗宾逊界(至多有亚多项式修正),从而确立了该协议在此情况下的最优性以及界的紧致性。该协议具有广泛的应用,包括量子传感、量子计算以及拓扑有序态的制备。此外,该协议为幂律相互作用系统的数字模拟中的门计数提供了一个下限。