Nicoli Kim A, Anders Christopher J, Funcke Lena, Hartung Tobias, Jansen Karl, Kessel Pan, Nakajima Shinichi, Stornati Paolo
Machine Learning Group, Technische Universität Berlin, Marchstr. 23 10587 Berlin, Germany.
Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario N2L 2Y5, Canada.
Phys Rev Lett. 2021 Jan 22;126(3):032001. doi: 10.1103/PhysRevLett.126.032001.
In this Letter, we demonstrate that applying deep generative machine learning models for lattice field theory is a promising route for solving problems where Markov chain Monte Carlo (MCMC) methods are problematic. More specifically, we show that generative models can be used to estimate the absolute value of the free energy, which is in contrast to existing MCMC-based methods, which are limited to only estimate free energy differences. We demonstrate the effectiveness of the proposed method for two-dimensional ϕ^{4} theory and compare it to MCMC-based methods in detailed numerical experiments.
在本信函中,我们证明了将深度生成式机器学习模型应用于晶格场理论是解决马尔可夫链蒙特卡罗(MCMC)方法存在问题的一类问题的一条有前景的途径。更具体地说,我们表明生成模型可用于估计自由能的绝对值,这与现有的基于MCMC的方法形成对比,后者仅限于估计自由能差。我们在二维ϕ⁴理论中证明了所提出方法的有效性,并在详细的数值实验中将其与基于MCMC的方法进行比较。