Suppr超能文献

使用深度生成模型计算绝对自由能。

Computing Absolute Free Energy with Deep Generative Models.

作者信息

Ding Xinqiang, Zhang Bin

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

J Phys Chem B. 2020 Nov 12;124(45):10166-10172. doi: 10.1021/acs.jpcb.0c08645. Epub 2020 Nov 3.

Abstract

Fast and accurate evaluation of free energy has broad applications from drug design to material engineering. Computing the absolute free energy is of particular interest since it allows the assessment of the relative stability between states without intermediates. Here, we introduce a general framework for calculating the absolute free energy of a state. A key step of the calculation is the definition of a reference state with tractable deep generative models using locally sampled configurations. The absolute free energy of this reference state is zero by design. The free energy for the state of interest can then be determined as the difference from the reference. We applied this approach to both discrete and continuous systems and demonstrated its effectiveness. It was found that the Bennett acceptance ratio method provides more accurate and efficient free energy estimations than approximate expressions based on work. We anticipate the method presented here to be a valuable strategy for computing free energy differences.

摘要

快速准确地评估自由能在从药物设计到材料工程等广泛领域都有应用。计算绝对自由能尤其令人关注,因为它允许在没有中间体的情况下评估不同状态之间的相对稳定性。在此,我们介绍一种计算状态绝对自由能的通用框架。计算的关键步骤是使用局部采样构型,通过易于处理的深度生成模型定义一个参考状态。该参考状态的绝对自由能按设计为零。然后,感兴趣状态的自由能可确定为与参考状态的差值。我们将此方法应用于离散和连续系统,并证明了其有效性。结果发现,与基于功的近似表达式相比,贝内特接受率方法能提供更准确、更高效的自由能估计。我们预计这里提出的方法将成为计算自由能差的一种有价值的策略。

相似文献

1
Computing Absolute Free Energy with Deep Generative Models.
J Phys Chem B. 2020 Nov 12;124(45):10166-10172. doi: 10.1021/acs.jpcb.0c08645. Epub 2020 Nov 3.
2
DeepBAR: A Fast and Exact Method for Binding Free Energy Computation.
J Phys Chem Lett. 2021 Mar 18;12(10):2509-2515. doi: 10.1021/acs.jpclett.1c00189. Epub 2021 Mar 15.
3
Bayesian Multistate Bennett Acceptance Ratio Methods.
J Chem Theory Comput. 2024 Mar 12;20(5):1878-1888. doi: 10.1021/acs.jctc.3c01212. Epub 2024 Feb 22.
5
Assessing the Accuracy and Efficiency of Free Energy Differences Obtained from Flow-Based Probabilistic Generative Models.
J Chem Theory Comput. 2024 Jul 23;20(14):5913-5922. doi: 10.1021/acs.jctc.4c00520. Epub 2024 Jul 10.
6
Computing free energies of protein conformations from explicit solvent simulations.
Methods. 2010 Sep;52(1):115-21. doi: 10.1016/j.ymeth.2010.05.003. Epub 2010 May 20.
7
An efficient, path-independent method for free-energy calculations.
J Phys Chem B. 2006 Aug 31;110(34):17212-20. doi: 10.1021/jp060734j.
10
An Approach to Computing Solvent Reorganization Energy.
J Chem Theory Comput. 2020 Oct 13;16(10):6513-6519. doi: 10.1021/acs.jctc.0c00672. Epub 2020 Sep 30.

引用本文的文献

1
Accurate Lattice Free Energies of Packing Polymorphs from Probabilistic Generative Models.
J Chem Theory Comput. 2025 Mar 11;21(5):2244-2255. doi: 10.1021/acs.jctc.4c01612. Epub 2025 Feb 21.
2
Assessing the Accuracy and Efficiency of Free Energy Differences Obtained from Flow-Based Probabilistic Generative Models.
J Chem Theory Comput. 2024 Jul 23;20(14):5913-5922. doi: 10.1021/acs.jctc.4c00520. Epub 2024 Jul 10.
3
Learned mappings for targeted free energy perturbation between peptide conformations.
J Chem Phys. 2023 Sep 28;159(12). doi: 10.1063/5.0164662.
4
Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
Biophys J. 2023 Sep 5;122(17):3425-3438. doi: 10.1016/j.bpj.2023.07.017. Epub 2023 Jul 26.
5
Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
bioRxiv. 2023 Jul 21:2023.03.17.533194. doi: 10.1101/2023.03.17.533194.
6
Application of Computational Biology and Artificial Intelligence in Drug Design.
Int J Mol Sci. 2022 Nov 5;23(21):13568. doi: 10.3390/ijms232113568.
7
Contrastive Learning of Coarse-Grained Force Fields.
J Chem Theory Comput. 2022 Oct 11;18(10):6334-6344. doi: 10.1021/acs.jctc.2c00616. Epub 2022 Sep 16.
8
Unifying coarse-grained force fields for folded and disordered proteins.
Curr Opin Struct Biol. 2022 Feb;72:63-70. doi: 10.1016/j.sbi.2021.08.006. Epub 2021 Sep 15.
9
DeepBAR: A Fast and Exact Method for Binding Free Energy Computation.
J Phys Chem Lett. 2021 Mar 18;12(10):2509-2515. doi: 10.1021/acs.jpclett.1c00189. Epub 2021 Mar 15.

本文引用的文献

1
Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models.
Phys Rev Lett. 2021 Jan 22;126(3):032001. doi: 10.1103/PhysRevLett.126.032001.
2
Targeted free energy estimation via learned mappings.
J Chem Phys. 2020 Oct 14;153(14):144112. doi: 10.1063/5.0018903.
3
Asymptotically unbiased estimation of physical observables with neural samplers.
Phys Rev E. 2020 Feb;101(2-1):023304. doi: 10.1103/PhysRevE.101.023304.
4
ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution.
J Chem Theory Comput. 2020 Jan 14;16(1):528-552. doi: 10.1021/acs.jctc.9b00591. Epub 2019 Dec 3.
5
Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning.
Science. 2019 Sep 6;365(6457). doi: 10.1126/science.aaw1147.
6
Solving Statistical Mechanics Using Variational Autoregressive Networks.
Phys Rev Lett. 2019 Mar 1;122(8):080602. doi: 10.1103/PhysRevLett.122.080602.
7
Fast Solver for Large Scale Multistate Bennett Acceptance Ratio Equations.
J Chem Theory Comput. 2019 Feb 12;15(2):799-802. doi: 10.1021/acs.jctc.8b01010. Epub 2019 Feb 4.
8
Neural Network Renormalization Group.
Phys Rev Lett. 2018 Dec 28;121(26):260601. doi: 10.1103/PhysRevLett.121.260601.
9
Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces.
Phys Rev Lett. 2017 Oct 13;119(15):150601. doi: 10.1103/PhysRevLett.119.150601. Epub 2017 Oct 11.
10
Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation.
J Chem Theory Comput. 2017 Jun 13;13(6):2501-2510. doi: 10.1021/acs.jctc.7b00204. Epub 2017 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验