Suppr超能文献

开发多模态动态功能连接作为神经影像学生物标志物。

Developing Multimodal Dynamic Functional Connectivity as a Neuroimaging Biomarker.

机构信息

Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA.

Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA.

出版信息

Brain Connect. 2021 Sep;11(7):529-542. doi: 10.1089/brain.2020.0900. Epub 2021 Apr 13.

Abstract

In spite of increasing evidence highlighting the role of dynamic functional connectivity (FC) in characterizing mental disorders, there is a lack of (a) reliable statistical methods to compute dynamic connectivity and (b) rigorous dynamic FC-based approaches for predicting mental health outcomes in heterogeneous disorders such as post-traumatic stress disorder (PTSD). In one of the first such efforts, we develop a reliable and accurate approach for estimating dynamic FC guided by brain structural connectivity (SC) computed using diffusion tensor imaging data and investigate the potential of the proposed multimodal dynamic FC to predict continuous mental health outcomes. We develop concrete measures of temporal network variability that are predictive of PTSD resilience, and identify regions whose temporal connectivity fluctuations are significantly related to resilience. Our results illustrate that the multimodal approach is more sensitive to connectivity change points, it can clearly detect localized brain regions with the dynamic network features such as small-worldedness, clustering coefficients, and efficiency associated with resilience, and that it has superior predictive performance compared with existing static and dynamic network models when modeling PTSD resilience. While the majority of resting-state network modeling in psychiatry has focused on static FC, our novel multimodal dynamic network analyses that are sensitive to network fluctuations allowed us to provide a model of neural correlates of resilience with high accuracy compared with existing static connectivity approaches or those that do not use brain SC information, and provided us with an expanded understanding of the neurobiological causes for PTSD. Impact statement The methods developed in this article provide reliable and accurate dynamic functional connectivity (FC) approaches by fusing multimodal imaging data that are highly predictive of continuous clinical phenotypes in heterogeneous mental disorders. Currently, there is very little theoretical work to explain how network dynamics might contribute to individual differences in behavior or psychiatric symptoms. Our analysis conclusively discovers localized brain resting-state networks, regions, and connections where variations in dynamic FC (that is estimated after incorporating brain structural connectivity information) are associated with post-traumatic stress disorder resilience, which could potentially provide valuable tools for the development of neural circuit modeling in psychiatry in the future.

摘要

尽管越来越多的证据强调了动态功能连接(FC)在描述精神障碍中的作用,但仍存在以下问题:(a) 缺乏可靠的统计方法来计算动态连接;(b) 缺乏严格的基于动态 FC 的方法来预测创伤后应激障碍(PTSD)等异质障碍的心理健康结果。在首批此类研究中,我们开发了一种可靠且准确的方法,该方法基于使用扩散张量成像数据计算的脑结构连接(SC)来估计动态 FC,并研究了所提出的多模态动态 FC 预测连续心理健康结果的潜力。我们开发了可预测 PTSD 韧性的时间网络变异性的具体度量标准,并确定了与韧性显著相关的时间连通性波动的区域。我们的研究结果表明,多模态方法对连接变化点更敏感,它可以清楚地检测到具有动态网络特征(如小世界性、聚类系数和与韧性相关的效率)的局部脑区,并且在 PTSD 韧性建模方面优于现有的静态和动态网络模型。虽然精神病学中的大多数静息态网络建模都集中在静态 FC 上,但我们新颖的多模态动态网络分析对网络波动敏感,与现有的静态连接方法或不使用脑 SC 信息的方法相比,我们能够提供具有高精度的神经弹性相关模型,并为 PTSD 的神经生物学原因提供了更广泛的理解。 影响描述 本文中开发的方法通过融合多模态成像数据提供了可靠且准确的动态功能连接(FC)方法,这些数据对异质精神障碍中的连续临床表型具有高度预测性。目前,几乎没有理论工作来解释网络动态如何导致个体行为或精神症状的差异。我们的分析明确发现了局部脑静息态网络、区域和连接,其中动态 FC 的变化(即在纳入脑结构连接信息后估计)与创伤后应激障碍的弹性相关,这可能为未来精神病学中的神经回路建模提供有价值的工具。

相似文献

本文引用的文献

3
Brain Network Dynamics Correlate with Personality Traits.脑网络动力学与人格特质相关。
Brain Connect. 2020 Apr;10(3):108-120. doi: 10.1089/brain.2019.0723. Epub 2020 Apr 8.
8
Treating PTSD: A Review of Evidence-Based Psychotherapy Interventions.治疗创伤后应激障碍:循证心理治疗干预综述
Front Behav Neurosci. 2018 Nov 2;12:258. doi: 10.3389/fnbeh.2018.00258. eCollection 2018.
10
Estimating dynamic brain functional networks using multi-subject fMRI data.利用多主体 fMRI 数据估计动态脑功能网络。
Neuroimage. 2018 Dec;183:635-649. doi: 10.1016/j.neuroimage.2018.07.045. Epub 2018 Jul 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验