Center for Population Health IT, Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
Division of Health Sciences Informatics, Johns Hopkins School of Medicine, Baltimore Maryland, USA.
Popul Health Manag. 2021 Oct;24(5):601-609. doi: 10.1089/pop.2020.0306. Epub 2021 Feb 5.
Multiple indices are available to measure medication adherence behaviors. Medication adherence measures, however, have rarely been extracted from electronic health records (EHRs) for population-level risk predictions. This study assessed the value of medication adherence indices in improving predictive models of cost and hospitalization. This study included a 2-year retrospective cohort of patients younger than age 65 years with linked EHR and insurance claims data. Three medication adherence measures were calculated: medication regimen complexity index (MRCI), medication possession ratio (MPR), and prescription fill rate (PFR). The authors examined the effects of adding these measures to 3 predictive models of utilization: a demographics model, a conventional model (Charlson index), and an advanced diagnosis-based model. Models were trained using EHR and claims data. The study population had an overall MRCI, MPR, and PFR of 14.6 ± 17.8, .624 ± .310, and .810 ± .270, respectively. Adding MRCI and MPR to the demographic and the morbidity models using claims data improved forecasting of next-year hospitalization substantially (eg, AUC of the demographic model increased from .605 to .656 using MRCI). Nonetheless, such boosting effects were attenuated for the advanced diagnosis-based models. Although EHR models performed inferior to claims models, adding adherence indices improved EHR model performances at a larger scale (eg, adding MRCI increased AUC by 4.4% for the Charlson model using EHR data compared to 3.8% using claims). This study shows that medication adherence measures can modestly improve EHR- and claims-derived predictive models of cost and hospitalization in non-elderly patients; however, the improvements are minimal for advanced diagnosis-based models.
有多种指标可用于衡量药物依从性行为。然而,药物依从性测量值很少从电子健康记录 (EHR) 中提取出来,以用于人群水平的风险预测。本研究评估了药物依从性指标在改善成本和住院预测模型方面的价值。本研究纳入了一个年龄在 65 岁以下的 2 年回顾性队列,这些患者的 EHR 和保险理赔数据是相互关联的。计算了三种药物依从性指标:药物治疗方案复杂指数 (MRCI)、药物利用率 (MPR) 和处方配药率 (PFR)。作者研究了将这些指标添加到三种利用预测模型(人口统计学模型、传统模型(Charlson 指数)和基于先进诊断的模型)中对预测结果的影响。使用 EHR 和理赔数据对模型进行了训练。研究人群的整体 MRCI、MPR 和 PFR 分别为 14.6±17.8、0.624±0.310 和 0.810±0.270。使用理赔数据将 MRCI 和 MPR 添加到人口统计学和发病模型中,可显著提高下一年住院的预测效果(例如,使用 MRCI 后人口统计学模型的 AUC 从 0.605 增加到 0.656)。尽管如此,这种增强效果对于基于先进诊断的模型有所减弱。尽管 EHR 模型的性能不如理赔模型,但在更大规模上添加依从性指标可以提高 EHR 模型的性能(例如,与使用理赔数据相比,使用 EHR 数据时,添加 MRCI 使 Charlson 模型的 AUC 增加了 4.4%)。本研究表明,药物依从性指标可以适度改善非老年患者的 EHR 和理赔衍生的成本和住院预测模型;然而,对于基于先进诊断的模型,这种改善效果甚微。