Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium.
World J Microbiol Biotechnol. 2021 Feb 5;37(3):37. doi: 10.1007/s11274-021-03006-5.
The antimicrobial applications of copper (Cu) are exploited in several industries, such as agriculture and healthcare settings. While Cu is capable of efficiently killing microorganisms, sub-lethal doses can induce a viable-but-non-culturable (VBNC) state in bacteria of many distinct clades. VBNC cells cannot be detected by standard culture-based detection methods, and can become a threat to plants and animals as they often retain virulent traits upon resuscitation. Here we discuss the putative mechanisms of the Cu-induced VBNC state. Common observations in Cu-induced VBNC cells include a cellular response to reactive oxygen species, the exhaustion of energy reserves, and a reconfiguration of the proteome. While showing partial overlap with other VBNC state-inducing stressors, these changes seem to be part of an adaptive response to Cu toxicity. Furthermore, we argue that Cu resistance mechanisms such as P-type ATPases and multicopper oxidases may ward off entry into the VBNC state to some extent. The spread of these mechanisms across multi-species populations could increase population-level resistance to Cu antimicrobials. As Cu resistance mechanisms are often co-selected with antibiotic resistance mechanisms, this threat is exacerbated.
铜 (Cu) 的抗菌应用在农业和医疗等多个行业得到了开发。尽管 Cu 能够有效地杀死微生物,但亚致死剂量会诱导许多不同进化枝的细菌进入存活但非可培养 (VBNC) 状态。VBNC 细胞不能通过标准的基于培养的检测方法检测到,并且当它们在复苏时经常保留毒性特征时,它们会对植物和动物构成威胁。在这里,我们讨论了 Cu 诱导的 VBNC 状态的可能机制。在 Cu 诱导的 VBNC 细胞中常见的观察结果包括对活性氧的细胞反应、能量储备的耗尽以及蛋白质组的重新配置。虽然与其他诱导 VBNC 状态的应激因素有部分重叠,但这些变化似乎是对 Cu 毒性的适应性反应的一部分。此外,我们认为 P 型 ATP 酶和多铜氧化酶等 Cu 抗性机制在某种程度上可以防止进入 VBNC 状态。这些机制在多物种群体中的传播可能会增加种群对 Cu 抗菌剂的抗性。由于 Cu 抗性机制通常与抗生素抗性机制共同选择,因此这种威胁更加严重。