Suppr超能文献

开发和验证一种新的列线图模型以预测多发性颅内动脉瘤患者的动脉瘤破裂:一项多中心回顾性研究。

Development and validation of a novel nomogram to predict aneurysm rupture in patients with multiple intracranial aneurysms: a multicentre retrospective study.

机构信息

Neurosurgery Department, Beijing Hospital, Beijing, Beijing, China.

Neurointervention Center, Beijing Neurosurgical Institute, Beijing, China.

出版信息

Stroke Vasc Neurol. 2021 Sep;6(3):433-440. doi: 10.1136/svn-2020-000480. Epub 2021 Feb 5.

Abstract

BACKGROUND AND PURPOSE

Approximately 15%-45% of patients with unruptured intracranial aneurysms have multiple intracranial aneurysms (MIAs). Determining which one is most likely to rupture is extremely important for treatment decision making for MIAs patients. This study aimed to develop and validate a nomogram to evaluate the per-aneurysm rupture risk of MIAs patients.

METHODS

A total of 1671 IAs from 700 patients with MIAs were randomly dichotomised into derivation and validation sets. Multivariate logistic regression analysis was used to select predictors and construct a nomogram model for aneurysm rupture risk assessment in the derivation set. The discriminative accuracy, calibration performance and clinical usefulness of this nomogram were assessed. We also developed a multivariate model for a subgroup of 158 subarachnoid haemorrhage (SAH) patients and compared its performance with the nomogram model.

RESULTS

Multivariate analyses identified seven variables that were significantly associated with IA rupture (history of SAH, alcohol consumption, female sex, aspect ratio >1.5, posterior circulation, irregular shape and bifurcation location). The clinical and morphological-based MIAs (CMB-MIAs) nomogram model showed good calibration and discrimination (derivation set: area under the curve (AUC)=0.740 validation set: AUC=0.772). Decision curve analysis demonstrated that the nomogram was clinically useful. Compared with the nomogram model, the AUC of multivariate model developed from SAH patients had lower value of 0.730.

CONCLUSIONS

This CMB-MIAs nomogram for MIAs rupture risk is the first to be developed and validated in a large multi-institutional cohort. This nomogram could be used in decision-making and risk stratification in MIAs patients.

摘要

背景与目的

约 15%-45%的颅内未破裂动脉瘤患者存在多个颅内动脉瘤(MIAs)。确定哪一个最有可能破裂对于 MIAs 患者的治疗决策至关重要。本研究旨在开发和验证一种列线图,以评估 MIAs 患者的每个动脉瘤破裂风险。

方法

将 700 例 MIAs 患者的 1671 个动脉瘤随机分为推导集和验证集。多变量逻辑回归分析用于选择预测因子并构建推导集中用于评估动脉瘤破裂风险的列线图模型。评估该列线图的判别准确性、校准性能和临床实用性。我们还为 158 例蛛网膜下腔出血(SAH)患者的亚组开发了一个多变量模型,并将其性能与列线图模型进行比较。

结果

多变量分析确定了与 IA 破裂显著相关的七个变量(SAH 病史、饮酒、女性、长宽比>1.5、后循环、不规则形状和分叉位置)。基于临床和形态的 MIAs(CMB-MIAs)列线图模型显示出良好的校准和判别能力(推导集:曲线下面积(AUC)=0.740,验证集:AUC=0.772)。决策曲线分析表明该列线图具有临床实用性。与列线图模型相比,来自 SAH 患者的多变量模型的 AUC 值较低,为 0.730。

结论

这是首个在大型多机构队列中开发和验证的用于 MIAs 破裂风险的 CMB-MIAs 列线图。该列线图可用于 MIAs 患者的决策制定和风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058f/8485246/c47ea75eb1b5/svn-2020-000480f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验