Ozkan-Aydin Yasemin, Goldman Daniel I, Bhamla M Saad
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332.
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2010542118.
Living systems at all scales aggregate in large numbers for a variety of functions including mating, predation, and survival. The majority of such systems consist of unconnected individuals that collectively flock, school, or swarm. However, some aggregations involve physically entangled individuals, which can confer emergent mechanofunctional material properties to the collective. Here, we study in laboratory experiments and rationalize in theoretical and robophysical models the dynamics of physically entangled and motile self-assemblies of 1-cm-long California blackworms (, Annelida: Clitellata: Lumbriculidae). Thousands of individual worms form braids with their long, slender, and flexible bodies to make a three-dimensional, soft, and shape-shifting "blob." The blob behaves as a living material capable of mitigating damage and assault from environmental stresses through dynamic shape transformations, including minimizing surface area for survival against desiccation and enabling transport (negative thermotaxis) from hazardous environments (like heat). We specifically focus on the locomotion of the blob to understand how an amorphous entangled ball of worms can break symmetry to move across a substrate. We hypothesize that the collective blob displays rudimentary differentiation of function across itself, which when combined with entanglement dynamics facilitates directed persistent blob locomotion. To test this, we develop a robophysical model of the worm blobs, which displays emergent locomotion in the collective without sophisticated control or programming of any individual robot. The emergent dynamics of the living functional blob and robophysical model can inform the design of additional classes of adaptive mechanofunctional living materials and emergent robotics.
各种规模的生命系统会大量聚集以实现多种功能,包括交配、捕食和生存。大多数此类系统由互不相连的个体组成,它们会集体聚集、成群或 swarm(此处“swarm”可译为“蜂拥”等类似意思,结合语境整体通顺即可)。然而,一些聚集体涉及身体相互缠绕的个体,这可以赋予集体一些涌现的机械功能材料特性。在这里,我们通过实验室实验进行研究,并在理论和机器人物理模型中进行合理化分析,研究对象是1厘米长的加利福尼亚黑蠕虫(环节动物门:寡毛纲:颤蚓科)形成的身体相互缠绕且能移动的自组装体的动力学。成千上万的个体蠕虫用它们长而细且灵活的身体形成辫子状,从而构成一个三维的、柔软且能改变形状的“团块”。这个团块表现为一种有生命的材料,能够通过动态形状变换来减轻环境压力造成的损害和攻击,包括通过最小化表面积以在干燥环境中生存,以及实现从危险环境(如高温)的迁移(负趋温性)。我们特别关注团块的运动,以了解一个由蠕虫组成的无定形缠绕球体如何打破对称性以在基质上移动。我们假设集体团块在自身上表现出基本功能分化,这与缠绕动力学相结合有助于团块持续定向运动。为了验证这一点,我们开发了一个蠕虫团块的机器人物理模型,该模型在集体中展现出涌现运动,而无需对任何单个机器人进行复杂控制或编程。有生命的功能团块和机器人物理模型的涌现动力学可以为设计更多类型的适应性机械功能生物材料和涌现机器人技术提供参考。