Deblais Antoine, Prathyusha K R, Sinaasappel Rosa, Tuazon Harry, Tiwari Ishant, Patil Vishal P, Bhamla M Saad
van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Soft Matter. 2023 Sep 27;19(37):7057-7069. doi: 10.1039/d3sm00542a.
Recently, the study of long, slender living worms has gained attention due to their unique ability to form highly entangled physical structures, exhibiting emergent behaviors. These organisms can assemble into an active three-dimensional soft entity referred to as the "blob", which exhibits both solid-like and liquid-like properties. This blob can respond to external stimuli such as light, to move or change shape. In this perspective article, we acknowledge the extensive and rich history of polymer physics, while illustrating how these living worms provide a fascinating experimental platform for investigating the physics of active, polymer-like entities. The combination of activity, long aspect ratio, and entanglement in these worms gives rise to a diverse range of emergent behaviors. By understanding the intricate dynamics of the worm blob, we could potentially stimulate further research into the behavior of entangled active polymers, and guide the advancement of synthetic topological active matter and bioinspired tangling soft robot collectives.
最近,对细长活体蠕虫的研究受到了关注,因为它们具有形成高度缠结物理结构的独特能力,并展现出涌现行为。这些生物体能够组装成一个被称为“团块”的活性三维软实体,该实体兼具类固体和类液体的特性。这个团块能够对诸如光等外部刺激做出反应,从而移动或改变形状。在这篇观点文章中,我们认可聚合物物理学广泛而丰富的历史,同时阐述这些活体蠕虫如何为研究活性、类聚合物实体的物理学提供了一个引人入胜的实验平台。这些蠕虫的活性、长径比和缠结相结合,产生了各种各样的涌现行为。通过理解蠕虫团块的复杂动力学,我们有可能推动对缠结活性聚合物行为的进一步研究,并指导合成拓扑活性物质和受生物启发的缠结软机器人集群的发展。