Lin Longfei, Fan Mengtian, Sheveleva Alena M, Han Xue, Tang Zhimou, Carter Joseph H, da Silva Ivan, Parlett Christopher M A, Tuna Floriana, McInnes Eric J L, Sastre German, Rudić Svemir, Cavaye Hamish, Parker Stewart F, Cheng Yongqiang, Daemen Luke L, Ramirez-Cuesta Anibal J, Attfield Martin P, Liu Yueming, Tang Chiu C, Han Buxing, Yang Sihai
Department of Chemistry, University of Manchester, Manchester, UK.
Photon Science Institute, University of Manchester, Manchester, UK.
Nat Commun. 2021 Feb 5;12(1):822. doi: 10.1038/s41467-021-21062-1.
Optimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon-carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon-carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.
在最先进的甲醇制烯烃(MTO)研究中,优化丙烯选择性、丙烯/乙烯比和催化稳定性之间的平衡,并阐明第一个碳-碳键形成的明确机制,是极具重要性的挑战性目标。我们报道了一种通过将钽(V)和铝(III)中心引入骨架来精细控制商用MFI沸石孔内活性位点性质的策略。所得的TaAlS-1沸石在甲醇完全转化时同时表现出显著的丙烯选择性(51%)、丙烯/乙烯比(8.3)和催化稳定性(>50小时)。原位同步辐射X射线粉末衍射、X射线吸收光谱和非弹性中子散射结合密度泛函理论计算表明,第一个碳-碳键是在活化的甲醇分子和三甲基氧鎓中间体之间形成的。钽(V)和布朗斯台德酸位点之间前所未有的协同作用为甲醇的高效转化创造了最佳微环境,从而极大地推动了沸石在轻质烯烃可持续制造中的应用。