School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia.
School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia.
Insect Biochem Mol Biol. 2021 Apr;131:103547. doi: 10.1016/j.ibmb.2021.103547. Epub 2021 Feb 3.
Insecticides remain valuable tools for the control of insect pests that significantly impact human health and agriculture. A deeper understanding of insecticide targets is important in maintaining this control over pests. Our study systematically investigates the nicotinic acetylcholine receptor (nAChR) gene family, in order to identify the receptor subunits critical to the insect response to insecticides from three distinct chemical classes (neonicotinoids, spinosyns and sulfoximines). Applying the CRISPR/Cas9 gene editing technology in D. melanogaster, we were able to generate and maintain homozygous mutants for eight nAChR subunit genes. A ninth gene (Dβ1) was investigated using somatic CRISPR in neural cells to overcome the low viability of the homozygous germline knockout mutant. These findings highlight the specificity of the spinosyn class insecticide, spinosad, to receptors containing the Dα6 subunit. By way of contrast, neonicotinoids are likely to target multiple receptor subtypes, beyond those receptor subunit combinations previously identified. Significant differences in the impacts of specific nAChR subunit deletions on the resistance level of flies to neonicotinoids imidacloprid and nitenpyram indicate that the receptor subtypes they target do not completely overlap. While an R81T mutation in β1 subunits has revealed residues co-ordinating binding of sulfoximines and neonicotinoids differ, the resistance profiles of a deletion of Dβ1 examined here provide new insights into the mode of action of sulfoxaflor (sulfoximine) and identify Dβ1 as a key component of nAChRs targeted by both these insecticide classes. A comparison of resistance phenotypes found in this study to resistance reported in insect pests reveals a strong conservation of subunit targets across many different insect species and that mutations have been identified in most of the receptor subunits that our findings would predict to have the potential to confer resistance.
杀虫剂仍然是控制对人类健康和农业有重大影响的害虫的重要工具。深入了解杀虫剂的靶标对于保持对害虫的这种控制至关重要。我们的研究系统地研究了烟碱型乙酰胆碱受体(nAChR)基因家族,以鉴定对三种不同化学类别的杀虫剂(新烟碱类、多杀菌素和肟类杀虫剂)昆虫反应至关重要的受体亚基。我们应用 CRISPR/Cas9 基因编辑技术在黑腹果蝇中,成功生成并维持了 8 个 nAChR 亚基基因的纯合突变体。第 9 个基因(Dβ1)通过神经细胞中的体细胞 CRISPR 进行研究,以克服纯合生殖系敲除突变体的低存活率。这些发现强调了多杀菌素类杀虫剂 spinosad 对含有 Dα6 亚基的受体的特异性。相比之下,新烟碱类杀虫剂可能针对除以前确定的受体亚基组合之外的多种受体亚型。特定 nAChR 亚基缺失对果蝇对新烟碱类杀虫剂吡虫啉和噻虫嗪的抗性水平的影响存在显著差异,这表明它们所针对的受体亚型并不完全重叠。虽然β1 亚基中的 R81T 突变揭示了协调结合肟类杀虫剂和新烟碱类杀虫剂的残基不同,但这里研究的 Dβ1 缺失的抗性谱为了解磺酰亚胺类杀虫剂(肟类杀虫剂)的作用模式提供了新的见解,并确定 Dβ1 是这两类杀虫剂靶向的 nAChRs 的关键组成部分。与本研究中发现的抗性表型与昆虫害虫中报道的抗性进行比较,发现许多不同的昆虫物种中亚基靶标具有很强的保守性,并且我们的发现预测具有潜在抗性的大多数受体亚基都已经确定了突变。