Wang Yanwei, Wan Jin, Tian Wu, Hou Zhufeng, Gu Xiao, Wang Yu
The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China.
J Colloid Interface Sci. 2021 May 15;590:210-218. doi: 10.1016/j.jcis.2021.01.062. Epub 2021 Jan 26.
Single-atom catalysts (SACs) have attracted enormous attentions in heterogeneous catalysts due to the maximized atomic utilization and extraordinary catalytic performance. Similar to homogeneous catalytic ligands, the support in SACs plays a vital role in the catalytic properties. Herein, we present a series of transition-metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Os, Ir and Pt) anchored on a vanadium diselenide (VSe) monolayer as electrocatalysts through density functional theory calculations. Pd@VSe stands out among the considered SACs with a low overpotential of 0.38 V, exhibiting the excellent performance of oxygen reduction reaction (ORR). Meanwhile, a liner trend between the adsorption Gibbs free energy of the OH (ΔG*) and the predicted η is revealed, which may serve as a simple descriptor for the inherent ORR catalytic activity of SACs. Particularly, Pt@VSe shows extraordinarily low theoretical overpotential of -0.04/0.47 V for hydrogen/oxygen evolution reaction, which transcends the state-of-the-art Pt and IrO and thereby can be exploited as highly-efficient bifunctional electrocatalyst for overall water splitting. This work broadens the perception of designing multifunctional electrocatalysts based on two-dimensional VSe material and offers a new paradigm for investigating advanced SACs.
单原子催化剂(SACs)由于原子利用率最大化和卓越的催化性能,在多相催化剂中引起了广泛关注。与均相催化配体类似,SACs中的载体在催化性能中起着至关重要的作用。在此,我们通过密度泛函理论计算,展示了一系列锚定在二硒化钒(VSe)单层上的过渡金属原子(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Os、Ir和Pt)作为电催化剂。在考虑的SACs中,Pd@VSe脱颖而出,其过电位低至0.38 V,展现出优异的氧还原反应(ORR)性能。同时,揭示了OH的吸附吉布斯自由能(ΔG*)与预测的η之间的线性趋势,这可作为SACs固有ORR催化活性的简单描述符。特别地,Pt@VSe对析氢/析氧反应显示出极低的理论过电位-0.04/0.47 V,超越了目前最先进的Pt和IrO,因此可被开发为用于全水分解的高效双功能电催化剂。这项工作拓宽了基于二维VSe材料设计多功能电催化剂的认识,并为研究先进的SACs提供了新的范例。