Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
J Plant Physiol. 2021 Mar-Apr;258-259:153365. doi: 10.1016/j.jplph.2021.153365. Epub 2021 Jan 21.
Over 160 years ago, scientists made the first microscopic observations of angiosperm pollen. Unlike in animals, male meiosis in angiosperms produces a haploid microspore that undergoes one asymmetric division to form a vegetative cell and a generative cell. These two cells have distinct fates: the vegetative cell exits the cell cycle and elongates to form a tip-growing pollen tube; the generative cell divides once more in the pollen grain or within the growing pollen tube to form a pair of sperm cells. The concept that male germ cells are less active than the vegetative cell came from biochemical analyses and pollen structure anatomy early in the last century and is supported by the pollen transcriptome data of the last decade. However, the mechanism of how and when the transcriptional repression in male germ cells occurs is still not fully understood. In this review, we provide a brief account of the cytological and metabolic differentiation between the vegetative cell and male germ cells, with emphasis on the role of temporary callose walls, dynamic nuclear pore density, transcription repression, and histone variants. We further discuss the intercellular movement of small interfering RNA (siRNA) derived from transposable elements (TEs) and reexamine the function of TE expression in male germ cells.
160 多年前,科学家首次对被子植物花粉进行了微观观察。与动物不同,被子植物的雄性减数分裂产生一个单倍体花粉粒,该花粉粒经历一次不对称分裂,形成一个营养细胞和一个生殖细胞。这两个细胞具有不同的命运:营养细胞退出细胞周期并伸长,形成顶端生长的花粉管;生殖细胞在花粉粒内或正在生长的花粉管内再分裂一次,形成一对精子细胞。雄性生殖细胞不如营养细胞活跃的概念来自于上世纪早期的生化分析和花粉结构解剖学,并得到了过去十年花粉转录组数据的支持。然而,雄性生殖细胞中转录抑制是如何以及何时发生的机制仍不完全清楚。在这篇综述中,我们简要介绍了营养细胞和雄性生殖细胞之间的细胞学和代谢分化,重点介绍了临时胼胝质壁、动态核孔密度、转录抑制和组蛋白变体的作用。我们进一步讨论了源自转座元件 (TE) 的小干扰 RNA (siRNA) 的细胞间运动,并重新审视了 TE 在雄性生殖细胞中的表达功能。