State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
College of Horticulture, Northwest A & F University, Yang Ling, Shaanxi, 712100, China.
Plant Physiol Biochem. 2021 Mar;160:377-385. doi: 10.1016/j.plaphy.2021.01.036. Epub 2021 Jan 28.
The nonreducing disaccharide trehalose is widespread in nature. It plays a very important role in plant growth and development. In plants, trehalose is present in trace amounts. High concentration of trehalose disrupts energy balance and inhibits normal growth and development. Studies have shown that high levels of trehalose and trehalose-6-phosphate (T6P), the metabolic precursor of trehalose, inhibit sucrose non-fermenting-1-related protein kinase1 (SnRK1) activity, which affect plant growth and development. However, the role of SnRK1, the energy balance center, in the regulation of trehalose metabolism in plants is unknown. In this study, exogenous trehalose at higher concentrations inhibited the expression of SnRK1 genes, especially PpSnRK1α in peach (Prunus persica) seedlings. This change in gene expression was dependent on trehalose concentration. Furthermore, overexpression of peach PpSnRK1α in Arabidopsis thaliana significantly promoted trehalase activity, reduced T6P content, and suppressed the trehalose synthesis related genes (TPSs, TPPB) expression, promoted the trehalose metabolism of gene expression (TRE1), in addition the transgenic plants alleviated photosynthetic product distribution imbalance (aboveground and underground parts), and enhanced root growth. Yeast two-hybrid and bimolecular fluorescence assays revealed the interaction between PpSnRK1α and peach basic domain leucine zipper transcription factor 11 (PpbZIP11), a key transcription factor of trehalose metabolism, in the nucleus. To summarize, PpSnRK1α overexpression improved bZIP11 transcriptional activity and regulated trehalose metabolism to protect the plants against trehalose-induced damage. This study preliminarily explained the mechanism of SnRK1 regulating trehalose metabolism balance in plants, which laid a foundation for further understanding of energy metabolism and function of SnRK1 in plants.
非还原二糖海藻糖广泛存在于自然界中。它在植物的生长和发育中起着非常重要的作用。在植物中,海藻糖的含量很低。海藻糖浓度过高会破坏能量平衡,抑制正常的生长和发育。研究表明,高水平的海藻糖和海藻糖-6-磷酸(T6P),即海藻糖的代谢前体,会抑制蔗糖非发酵-1 相关蛋白激酶 1(SnRK1)的活性,从而影响植物的生长和发育。然而,作为能量平衡中心的 SnRK1 在植物中海藻糖代谢的调节中的作用尚不清楚。在这项研究中,较高浓度的外源海藻糖抑制了 SnRK1 基因的表达,特别是桃(Prunus persica)幼苗中的 PpSnRK1α。这种基因表达的变化依赖于海藻糖的浓度。此外,在拟南芥中过表达桃 PpSnRK1α 显著促进海藻糖酶活性,降低 T6P 含量,抑制海藻糖合成相关基因(TPSs、TPPB)的表达,促进海藻糖代谢相关基因的表达(TRE1),此外,转基因植物缓解了光合产物分配不平衡(地上和地下部分),增强了根的生长。酵母双杂交和双分子荧光分析显示,PpSnRK1α 与桃碱性亮氨酸拉链转录因子 11(PpbZIP11)在核内相互作用,PpbZIP11 是海藻糖代谢的关键转录因子。总之,PpSnRK1α 的过表达提高了 bZIP11 的转录活性,调节了海藻糖代谢,以保护植物免受海藻糖诱导的损伤。本研究初步解释了 SnRK1 调节植物中海藻糖代谢平衡的机制,为进一步了解植物中 SnRK1 的能量代谢和功能奠定了基础。