Suppr超能文献

下一代骨计量分类:利用 3D 形态、椭圆傅里叶分析和 Hausdorff 距离优化骨骼对配准。

Next-generation osteometric sorting: Using 3D shape, elliptical Fourier analysis, and Hausdorff distance to optimize osteological pair-matching.

机构信息

Laboratory for Human Craniofacial and Skeletal Identification (HuCS-ID Lab), School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.

Defense POW/MIA Accounting Agency, Omaha, NE, USA.

出版信息

J Forensic Sci. 2021 May;66(3):821-836. doi: 10.1111/1556-4029.14681. Epub 2021 Feb 6.

Abstract

Determining which bilateral bones belong to the same person based on shape and size similarity is called pair-matching and it is instrumental for sorting commingled skeletons. To date, pair-matching has popularly been accomplished by visual inspection and/or linear caliper measurements; however, attention is turning increasingly to computational analysis. In this paper, we investigate a fast three-dimensional (3D) computerized shape-analysis method for whole-bone pair-matching using a test sample of 14 individuals (23 femora, 26 humeri, and 26 tibiae). Specifically, the method aims to find bilateral pairs using, as the shape signature criterion, a single 3D outline that snakes around each bone's perimeter as described by a 3D elliptical Fourier analysis function. This permits substantial 3D-point-cloud data reduction, that is, to 0.02% of the starting c.500,000 point cloud or just 100 points, while preserving key 3D shape information. The mean Hausdorff distance (Hd) was applied to measure the distance between each mirrored right-side outline to every left-side outline in pairwise fashion (132, 168 and 169 comparisons, respectively). Both thresholds and lowest Hd were investigated as pair-match criteria, with the lowest Hd producing the best performance results for searches jointly utilizing right-left and left-right directions for comparison: true positive rates of 1.00 (10/10), 1.00 (12/12), and 0.92 (11/12) for the femora, humeri, and tibiae, respectively. The computational time to calculate 469 pairwise 3D comparisons on a single stock-standard Intel Core™ i7-4650U CPU @ 1.70 GHz was 5 s. This short data processing time makes the method viable for real-world application.

摘要

基于形状和大小相似性来确定哪些双侧骨骼属于同一个人被称为配对匹配,这对于混合骨骼的分类非常重要。迄今为止,配对匹配通常通过目视检查和/或线性卡尺测量来完成;然而,人们越来越关注计算分析。在本文中,我们研究了一种快速的三维(3D)计算机形状分析方法,用于使用 14 个人的测试样本(23 个股骨、26 个肱骨和 26 个胫骨)进行全骨配对匹配。具体来说,该方法旨在使用单个 3D 轮廓作为形状特征标准来找到双侧对,该轮廓围绕每个骨骼的轮廓缠绕,如 3D 椭圆傅里叶分析函数所描述的那样。这允许大量的 3D 点云数据减少,即从起始的 c.500,000 个点云中减少到 0.02%,或仅减少到 100 个点,同时保留关键的 3D 形状信息。应用平均 Hausdorff 距离(Hd)来测量每个镜像右侧轮廓与每个左侧轮廓之间的距离,以成对的方式进行(分别为 132、168 和 169 次比较)。都考察了阈值和最低 Hd 作为配对匹配标准,最低 Hd 为使用左右方向进行比较的搜索产生了最佳的性能结果:股骨、肱骨和胫骨的真阳性率分别为 1.00(10/10)、1.00(12/12)和 0.92(11/12)。在单个标准的 Intel Core™ i7-4650U CPU @ 1.70 GHz 上计算 469 个 3D 对的计算时间为 5 秒。这种短的数据处理时间使得该方法在实际应用中可行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验