Suppr超能文献

胰岛素受体和细胞内 Ca²⁺ 形成双负调节反馈环路,控制胰岛素敏感性。

Insulin Receptors and Intracellular Ca Form a Double-Negative Regulatory Feedback Loop Controlling Insulin Sensitivity.

机构信息

Department of Advanced Cell Technologies, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Moscow, 119991, Russian Federation.

National Medical Research Center for Children's Health, Russian Ministry of Health, Moscow, 119991, Russian Federation.

出版信息

F1000Res. 2020 Jun 12;9:598. doi: 10.12688/f1000research.24558.2. eCollection 2020.

Abstract

Since the discovery of insulin and insulin receptors (IR) in the brain in 1978, numerous studies have revealed a fundamental role of IR in the central nervous system and its implication in regulating synaptic plasticity, long-term potentiation and depression, neuroprotection, learning and memory, and energy balance. Central insulin resistance has been found in diverse brain disorders including Alzheimer's disease (AD). Impaired insulin signaling in AD is evident in the activation states of IR and downstream signaling molecules. This is mediated by Aβ oligomer-evoked Ca  influx by activating N-methyl-D-aspartate receptors (NMDARs) with Aβ oligomers directly, or indirectly through Aβ-induced release of glutamate, an endogenous NMDAR ligand. In the present opinion article, we highlight evidence that IR activity and free intracellular Ca concentration [Ca ] form a double-negative regulatory feedback loop controlling insulin sensitivity, in which mitochondria play a key role, being involved in adenosine triphosphate (ATP) synthesis and IR activation. We found recently that the glutamate-evoked rise in [Ca ] inhibits activation of IR and, vice versa, insulin-induced activation of IR inhibits the glutamate-evoked rise in [Ca ] . In theory, such a double-negative regulatory feedback loop predicts that any condition leading to an increase of [Ca ] may trigger central insulin resistance and explains why central insulin resistance is implicated in the pathogenesis of AD, with which glutamate excitotoxicity is a comorbid condition. This model also predicts that any intervention aiming to maintain low [Ca ] may be useful for treating central insulin resistance.

摘要

自 1978 年在大脑中发现胰岛素和胰岛素受体(IR)以来,大量研究揭示了 IR 在中枢神经系统中的基本作用及其在调节突触可塑性、长时程增强和抑制、神经保护、学习和记忆以及能量平衡中的作用。包括阿尔茨海默病(AD)在内的多种脑部疾病都存在中枢性胰岛素抵抗。AD 中胰岛素信号转导受损,表现在 IR 和下游信号分子的激活状态。这种损伤是由 Aβ寡聚体通过直接激活 N-甲基-D-天冬氨酸受体(NMDAR)或间接通过 Aβ诱导的内源性 NMDAR 配体谷氨酸释放来引起 Ca2+内流而介导的。在本观点文章中,我们强调了证据表明,IR 活性和细胞内游离 Ca2+浓度[Ca2+]i 形成一个双重负调控反馈环,控制胰岛素敏感性,其中线粒体起着关键作用,参与三磷酸腺苷(ATP)合成和 IR 激活。我们最近发现,谷氨酸引发的[Ca2+]i 升高抑制 IR 的激活,反之亦然,胰岛素诱导的 IR 激活抑制谷氨酸引发的[Ca2+]i 升高。从理论上讲,这种双重负调控反馈环预测任何导致[Ca2+]i 升高的情况都可能引发中枢性胰岛素抵抗,并解释了为什么中枢性胰岛素抵抗与 AD 的发病机制有关,而谷氨酸兴奋性毒性是其共病条件。该模型还预测,任何旨在维持低[Ca2+]i 的干预措施都可能有助于治疗中枢性胰岛素抵抗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验