Obi Juliet O, Lubula Mulu Y, Cornilescu Gabriel, Henrickson Amy, McGuire Kara, Evans Chiara M, Phillips Margaret, Boyson Samuel P, Demeler Borries, Markley John L, Glass Karen C
Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, 05446, USA.
National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Curr Res Struct Biol. 2020;2:104-115. doi: 10.1016/j.crstbi.2020.05.001. Epub 2020 May 12.
Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.
含溴结构域的蛋白质通常是染色质修饰复合物的一部分,它们的活性会导致驱动人类癌症、炎症和神经疾病的基因表达发生改变。溴结构域 - PHD指蛋白1(BRPF1)是MOZ(单核细胞白血病锌指蛋白)HAT(组蛋白乙酰转移酶)复合物的一部分,该复合物与已知促成急性髓细胞白血病(AML)发展的染色体易位有关。BRPF1包含染色质读取结构域的独特组合,包括由锌指节(PZP结构域)隔开的两个植物同源结构域(PHD)指、一个溴结构域和一个脯氨酸 - 色氨酸 - 色氨酸 - 脯氨酸(PWWP)结构域。已知BRPF1通过其溴结构域识别N端组蛋白尾部区域上的乙酰化赖氨酸残基,从而将MOZ HAT复合物募集到染色质上。然而,组蛋白在其N端可含有多种乙酰化修饰,目前尚不清楚其他标记如何影响溴结构域与染色质的结合。在此,我们确定BRPF1溴结构域是组蛋白H4上双乙酰赖氨酸修饰的选择性读取器。我们使用等温滴定量热法(ITC)测定来表征双乙酰化组蛋白配体与BRPF1溴结构域的结合,发现该结构域优先结合组蛋白肽H4K5acK8ac和H4K5acK12ac。分析超速离心(AUC)实验表明,BRPF1溴结构域的单体状态可协调双乙酰化组蛋白配体。核磁共振化学位移扰动研究以及结合和突变分析揭示了溴结构域结合口袋的非规范区域,这些区域对于组蛋白尾部识别很重要。总之,我们的研究结果提供了关于翻译后修饰的组合作用如何调节BRPF1溴结构域结合和特异性的关键信息。