Department of Chemical Engineering, Texas Tech University.
Department of Chemical Engineering, Texas Tech University;
J Vis Exp. 2021 Jan 25(167). doi: 10.3791/61877.
This project aims to develop an easy-to-use and cost-effective platform for the fabrication of precise, multilayer microfluidic devices, which typically can only be achieved using costly equipment in a clean room setting. The key part of the platform is a three dimensionally (3D) printed microscope mask alignment adapter (MMAA) compatible with regular optical microscopes and ultraviolet (UV) light exposure systems. The overall process of creating the device has been vastly simplified because of the work done to optimize the device design. The process entails finding the proper dimensions for the equipment available in the laboratory and 3D-printing the MMAA with the optimized specifications. Experimental results show that the optimized MMAA designed and manufactured by 3D printing performs well with a common microscope and light exposure system. Using a master mold prepared by the 3D-printed MMAA, the resulting microfluidic devices with multilayered structures contain alignment errors of <10 µm, which is sufficient for common microchips. Although human error through transportation of the device to the UV light exposure system can cause larger fabrication errors, the minimal errors achieved in this study are attainable with practice and care. Furthermore, the MMAA can be customized to fit any microscope and UV exposure system by making changes to the modeling file in the 3D printing system. This project provides smaller laboratories with a useful research tool as it only requires the use of equipment that is typically already available to laboratories that produce and use microfluidic devices. The following detailed protocol outlines the design and 3D printing process for the MMAA. In addition, the steps for procuring a multilayer master mold using the MMAA and producing poly(dimethylsiloxane) (PDMS) microfluidic chips is also described herein.
本项目旨在开发一种易于使用且经济实惠的平台,用于制造精确的多层微流控设备,而这种设备通常只能在洁净室环境中使用昂贵的设备来实现。该平台的关键部分是一个与普通光学显微镜和紫外 (UV) 光曝光系统兼容的三维 (3D) 打印显微镜掩模对准适配器 (MMAA)。由于对设备设计进行了优化,整个设备制造过程得到了极大简化。该过程需要找到实验室中可用设备的适当尺寸,并使用优化后的规格使用 3D 打印制作 MMAA。实验结果表明,通过 3D 打印设计和制造的优化 MMAA 与普通显微镜和光曝光系统配合良好。使用由 3D 打印 MMAA 制备的主模具,所得到的具有多层结构的微流控设备的对准误差<10 µm,这对于普通微芯片来说已经足够了。尽管通过将设备运送到 UV 光曝光系统可能会导致更大的制造误差,但在这项研究中实现的最小误差是可以通过实践和谨慎来实现的。此外,通过在 3D 打印系统中更改建模文件,MMAA 可以根据需要进行定制,以适应任何显微镜和 UV 曝光系统。该项目为小型实验室提供了一种有用的研究工具,因为它只需要使用通常已经可供生产和使用微流控设备的实验室使用的设备。以下详细协议概述了 MMAA 的设计和 3D 打印过程。此外,还描述了使用 MMAA 获得多层主模具并制造聚二甲基硅氧烷 (PDMS) 微流控芯片的步骤。